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В статье приводится результат о нахождении минималь-
ного количества L(n) арифметических прогрессий, необходи-
мых для того, чтобы получить в объединении все натураль-
ные числа, не сравнимые по модулю n с 0 и −2. Здесь n —
произвольное натуральное число. При этом прогрессии мо-
гут пересекаться. Приводится точное значение для функции
L(n), а также конструктивное разбиение этого подмножества
натурального ряда на L(n) арифметических прогрессий.
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Введение

В рамках данной курсовой работы продолжаются исследования задачи
о разбиении прогрессивных множеств на минимальное количество
арифметических прогрессий. Прогрессивными множествами называем
подмножества натурального ряда, образованные объединением конеч-
ного количества арифметических прогрессий. В курсовой работе задача
решается в предположении, что прогрессивное множество состоит из
всех таких натуральных чисел, которые по некоторому фиксированному
натуральному числу n не дают остатки 0 и n−2. То есть, это множество
содержит n − 2 последовательных натуральных чисел, один пропуск,
число, один пропуск и дальше опять n−2 чисел, пропуск, число,пропуск
и так далее. О решении похожих задач можно прочитать в статьях [1-5].
О других интересных аспектах исследований авторов и других ученых
в смежных областях к тематике данной работы можно прочитать в [6-16].
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Основные определения и результаты

Множество натуральных чисел обозначаем через N. Множество це-
лых неотрицательных чисел обозначаем через N0. Пусть a ∈ N, b ∈ N0.

Тогда арифметической прогрессией с началом a и шагом b называется
множество

(a, b) := {a+ ib | i ∈ N0}.

Через T (n) обозначаем множество

T (n) := N \ ((n− 2, n) ∪ (n, n)).

Пусть n ∈ N. Через L(n) обозначаем минимальное количество арифме-
тических прогрессий, на которые можно разбить множество T (n).

Множество X ⊆ N называем опорным семейством для множества
Y ⊆ N, если для любых x1, x2 ∈ X,x1 < x2 выполнено

(x1, x2 − x1) ∩ Y 6= ∅.

Теорема 1. Пусть n ∈ N и n = pa11 · pa22 . . . patt — разложение числа
n на простые множители и p1 < p2 < . . . < pt. Тогда в зависимости от
случаев

L(n) = 2a1 − 3, p1 = 2, t = 1;

L(n) = (2a2 − 1)(p2 − 1) + (2a1 − 2), p1 = 2, t = 2;

L(n) = (2a2 − 1)(p2 − 1) + . . .+ (2at − 1)(pt − 1) + 1, p1 = 2, t > 2, a1 = 1;

L(n) = (2a2−1)(p2−1)+. . .+(2at−1)(pt−1)+(2a1−2), p1 = 2, t > 2, a1 > 1;

L(n) = (2a1 − 1)(p1 − 1)− 1, p1 > 2, t = 1;

L(n) = (2a1 − 1)(p1 − 1) + . . .+ (2at − 1)(pt − 1), p1 > 2, t > 1.

Доказательство вспомогательных утверждений
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Лемма 1. Для любых a, c ∈ N0 и b, d ∈ N верно

(a, b) ∩ (c, d) 6= ∅ ⇐⇒ a ≡ c (mod НОД(b, d)).

Доказательство леммы см. в [1].
Лемма 2. Пусть n ∈ N, X ⊆ T (n), Y = (n−2, n)∪(n, n) и X - опорное

семейство для Y. Тогда
L(n) > |X|.

Доказательство.
В любом разбиении множества T (n) на арифметические прогрессии

ни в какой из прогрессий не будет одновременно два числа из опорного
семейства. В самом деле, если бы это было не так, то тогда для некоторых
чисел x1, x2 ∈ X прогрессия (x1, x2 − x1) лежала бы целиком в какой-то
прогрессии разбиения и при этом пересекалась бы с множеством Y. Но
ни одна из прогрессий разбиения с Y пересекаться не будет, так как

T (n) = N \ ((n− 2, n) ∪ (n, n)).

Лемма доказана.

Доказательство основного утверждения

Теорема 1. Пусть n ∈ N и n = pa11 · pa22 . . . patt — разложение числа
n на простые множители и p1 < p2 < . . . < pt. Тогда в зависимости от
случаев

L(n) = 2a1 − 3, p1 = 2, t = 1;

L(n) = (2a2 − 1)(p2 − 1) + (2a1 − 2), p1 = 2, t = 2;

L(n) = (2a2 − 1)(p2 − 1) + . . .+ (2at − 1)(pt − 1) + 1, p1 = 2, t > 2, a1 = 1;

L(n) = (2a2−1)(p2−1)+. . .+(2at−1)(pt−1)+(2a1−2), p1 = 2, t > 2, a1 > 1;

L(n) = (2a1 − 1)(p1 − 1)− 1, p1 > 2, t = 1;

L(n) = (2a1 − 1)(p1 − 1) + . . .+ (2at − 1)(pt − 1), p1 > 2, t > 1.

Доказательство.
Пусть p1 = 2, t = 1. Докажем тогда, что

L(n) = L(2a1) = 2a1 − 3.
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Сначала представим T (n) в виде объединения 2a1 − 3 арифметических
прогрессий. Это можно сделать следующим образом:

T (n) = (1, 2) ∪ (2, 8) ∪ (4, 8) ∪ . . . ∪ (2a1−1 − 2, 2a1) ∪ (2a1−1, 2a1) =

= (1, 2) ∪ ((2, 8) ∪ . . . ∪ (2a1−1 − 2, 2a1)) ∪ ((4, 8) ∪ . . . ∪ (2a1−1, 2a1)).

Видно, что здесь 1+(a1−2)+(a1−2) = 2a1−3 прогрессий. И множество

(4, 8) ∪ . . . ∪ (2a1−1, 2a1)

покрывает все четные числа, делящиеся на 4, но не дающие остатка 0 по
модулю 2a1 . А множество

(2, 8) ∪ . . . ∪ (2a1−1 − 2, 2a1)

покрывает все четные числа, не делящиеся на 4 и не дающие остатка
2a1 − 2 по модулю 2a1 . Поэтому

L(2a1) 6 2a1 − 3.

Покажем, что
L(2a1) > 2a1 − 3.

Рассмотрим множества
X1 := {1},

X2 := {2, 6, 14, . . . , 2a1−1 − 2},
X3 := {4, 8, 16, . . . , , 2a1−1},
Y := (2a1 − 2, 2a1) ∪ (2a1 , 2a1).

Покажем, что множество

X := X1 ∪X2 ∪X3

будет опорным семейством для множества Y. Пусть x1, x2 ∈ X, x1 < x2.

Нужно доказать, что выполнено хотя бы одно из двух условий:

(x1, x2 − x1) ∩ (2a1 − 2, 2a1) 6= ∅, (1)

(x1, x2 − x1) ∩ (2a1 , 2a1) 6= ∅. (2)

Возможны случаи:
Случай 1.
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x1 ∈ X1, x2 ∈ X2. Тогда НОД(x2 − x1, 2a1) = 1 и по лемме 1 верно (1).

Случай 2.
x1 ∈ X1, x2 ∈ X3. Случай аналогичен предыдущему.
Случай 3.
x1 ∈ X2, x2 ∈ X2. Пусть

x1 = 2d1 − 2, x2 = 2d2 − 2.

Тогда НОД(x2 − x1, 2a1) = 2d1 и по лемме 1 верно (1).

Случай 4.
x1 ∈ X2, x2 ∈ X3. Пусть

x1 = 2d1 − 2, x2 = 2d2 .

Тогда НОД(x2 − x1, 2a1) = 2 и по лемме 1 верно (1).

Случай 5.
x1 ∈ X3, x2 ∈ X2. Случай аналогичен предыдущему.
Случай 6.
x1 ∈ X3, x2 ∈ X3. Пусть

x1 = 2d1 , x2 = 2d2 .

Тогда НОД(x2 − x1, 2a1) = 2d1 и по лемме 1 верно (2).

Разбор случаев завершен. Мы показали, что множествоX будет опорным
семейством для Y. Но в множестве X всего

|X1|+ |X2|+ |X3| = 1 + (a1 − 2) + (a1 − 2)

элементов. Поэтому по лемме 2 получаем L(2a1) > 2a1 − 3. В случае,
когда p1 = 2, t = 1, утверждение теоремы доказано.

Пусть p1 = 2, t = 2. Докажем тогда, что

L(n) = L(2a1pa22 ) = (2a2 − 1)(p2 − 1) + (2a1 − 2).

Здесь возможны два варианта:

1)a1 = 1; 2)a1 > 1.

В первом варианте для доказательства верхней оценки нужно предста-
вить T (n) в виде объединения (2a2−1)(p2−1) арифметических прогрес-
сий. Это можно сделать следующим образом:

T (n) = (1, 2) ∪ ((2, 2p2) ∪ (4, 2p2) ∪ (6, 2p2) ∪ . . . ∪ (2p2 − 4, 2p2))∪
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∪((2p2−2, 2p22)∪ (4p2−2, 2p22)∪ (6p2−2, 2p22)∪ . . .∪ ((2p2−2)p2−2, 2p22))∪
∪((2p22−2, 2p32)∪ (4p22−2, 2p32)∪ (6p22−2, 2p32)∪ . . .∪ ((2p2−2)p22−2, 2p32))∪
∪ . . . ∪ ((2pa2−1

2 − 2, 2pa22 ) ∪ (4pa2−1
2 − 2, 2pa22 ) ∪ (6pa2−1

2 − 2, 2pa22 )∪
∪ . . . ∪ ((2p2 − 2)pa2−1

2 − 2, 2pa22 ))∪
∪((2p2, 2p22) ∪ (4p2, 2p

2
2) ∪ (6p2, 2p

2
2) ∪ . . . ∪ ((2p2 − 2)p2, 2p

2
2))∪

∪((2p22, 2p32) ∪ (4p22, 2p
3
2) ∪ (6p22, 2p

3
2) ∪ . . . ∪ ((2p2 − 2)p22, 2p

3
2)) ∪ . . .∪

∪((2pa2−1
2 , 2pa22 )∪(4pa2−1

2 , 2pa22 )∪(6pa2−1
2 , 2pa22 )∪ . . .∪((2p2−2)pa2−1

2 , 2pa22 )).

Видно, что здесь 1+(p2−2)+2(a1−1)(p2−1) = (2a2−1)(p2−1) прогрессий.
Множество

(2, 2p2) ∪ (4, 2p2) ∪ (6, 2p2) ∪ . . . ∪ (2p2 − 4, 2p2)

покрывает все четные числа, не дающие остатков 0 и p2 − 2 по модулю
p2. Множество

((2p2− 2, 2p22)∪ (4p2− 2, 2p22)∪ (6p2− 2, 2p22)∪ . . .∪ ((2p2− 2)p2− 2, 2p22))∪

∪((2p22−2, 2p32)∪ (4p22−2, 2p32)∪ (6p22−2, 2p32)∪ . . .∪ ((2p2−2)p22−2, 2p32))∪
∪ . . . ∪ ((2pa2−1

2 − 2, 2pa22 ) ∪ (4pa2−1
2 − 2, 2pa22 )∪

∪(6pa2−1
2 − 2, 2pa22 ) ∪ . . . ∪ ((2p2 − 2)pa2−1

2 − 2, 2pa22 ))

покрывает все четные числа, дающие остаток p2 − 2 по модулю p2 и не
дающие остатка pa22 − 2 по модулю pa22 . И множество

((2p2, 2p
2
2) ∪ (4p2, 2p

2
2) ∪ (6p2, 2p

2
2) ∪ . . . ∪ ((2p2 − 2)p2, 2p

2
2))∪

∪((2p22, 2p32) ∪ (4p22, 2p
3
2) ∪ (6p22, 2p

3
2) ∪ . . . ∪ ((2p2 − 2)p22, 2p

3
2)) ∪ . . .∪

∪((2pa2−1
2 , 2pa22 )∪(4pa2−1

2 , 2pa22 )∪(6pa2−1
2 , 2pa22 )∪ . . .∪((2p2−2)pa2−1

2 , 2pa22 ))

покрывает все четные числа, дающие остаток 0 по модулю p2 и не даю-
щие остатка 0 по модулю pa22 . Поэтому

L(2pa22 ) 6 (2a2 − 1)(p2 − 1).

Для доказательства нижней оценки введем обозначения

X1 := {pa22 },
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X2 := {2, 4, 6, . . . , 2(p2 − 2)},
X1

3 := {2p2 − 2, 4p2 − 2, 6p2 − 2, . . . , 2(p2 − 1)p2 − 2},
X2

3 := {2p22 − 2, 4p22 − 2, 6p22 − 2, . . . , 2(p2 − 1)p22 − 2},
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Xa2−1
3 := {2pa2−1

2 − 2, 4pa2−1
2 − 2, 6pa2−1

2 − 2, . . . , 2(p2 − 1)pa2−1
2 − 2},

X1
4 := {2p2, 4p2, 6p2, . . . , 2(p2 − 1)p2},

X2
4 := {2p22, 4p22, 6p22, . . . , 2(p2 − 1)p22},

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Xa2−1
4 := {2pa2−1

2 , 4pa2−1
2 , 6pa2−1

2 , . . . , 2(p2 − 1)pa2−1
2 },

Y := (2pa22 − 2, 2pa22 ) ∪ (2pa22 , 2p
a2
2 )

и покажем, что множество

X := X1 ∪X2 ∪X1
3 ∪ . . . ∪Xa2−1

3 ∪X1
4 ∪ . . . ∪Xa2−1

4

будет опорным семейством для множества Y. Нужно доказать, что вы-
полнено хотя бы одно из двух условий:

(x1, x2 − x1) ∩ (2pa22 − 2, 2pa22 ) 6= ∅, (3)

(x1, x2 − x1) ∩ (2pa22 , 2p
a2
2 ) 6= ∅. (4)

Пусть x1, x2 ∈ X, x1 < x2. Возможны случаи:
Случай 1.
x1 ∈ X1, x2 ∈ X2 или x2 ∈ X1, x1 ∈ X2. Тогда НОД(x2 − x1, 2pa22 ) = 1 и
по лемме 1 верно (3).

Случай 2.
x1 ∈ X1, x2 ∈ Xi

3 или x2 ∈ X1, x1 ∈ Xi
3. Случай аналогичен предыдущему.

Случай 3.
x1 ∈ X1, x2 ∈ Xi

4 или x2 ∈ X1, x1 ∈ Xi
4. Тогда НОД(x2 − x1, 2pa22 ) = pi2 и

по лемме 1 верно (4).

Случай 4.
x1 ∈ X2, x2 ∈ X2. Тогда НОД(x2 − x1, 2pa22 ) = 2 и по лемме 1 верно (3).

Случай 5.
x1 ∈ X2, x2 ∈ Xi

3 или x2 ∈ X2, x1 ∈ Xi
3. Случай аналогичен предыдущему.

Случай 6.
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x1 ∈ X2, x2 ∈ Xi
4 или x2 ∈ X2, x1 ∈ Xi

4. Случай аналогичен предыдущему.
Случай 7.
x1 ∈ Xi

3, x2 ∈ Xi
3. Тогда НОД(x2− x1, 2pa22 ) = 2pi2 и по лемме 1 верно (3).

Случай 8.
x1 ∈ Xi

3, x2 ∈ Xj
3 , i < j. Случай аналогичен предыдущему.

Случай 9.
x1 ∈ Xi

3, x2 ∈ Xj
3 , i > j. Тогда НОД(x2 − x1, 2pa22 ) = 2pj2 и по лемме 1

верно (3).

Случай 10.
x1 ∈ Xi

3, x2 ∈ Xj
4 . Тогда НОД(x2 − x1, 2pa22 ) = 2 и по лемме 1 верно (3).

Случай 11.
x1 ∈ Xi

4, x2 ∈ Xi
4. Тогда НОД(x2− x1, 2pa22 ) = 2pi2 и по лемме 1 верно (4).

Случай 12.
x1 ∈ Xi

4, x2 ∈ Xj
4 , i < j. Случай аналогичен предыдущему.

Случай 13.
x1 ∈ Xi

4, x2 ∈ Xj
4 , i > j. Тогда НОД(x2 − x1, 2pa22 ) = 2pj2 и по лемме 1

верно (4).

Разбор случаев завершен. Мы показали, что множествоX будет опорным
семейством для Y. Но в множестве X всего

|X1|+ |X2|+ |X1
3 |+ . . .+ |Xa2−1

3 |+ |X1
4 |+ . . .+ |Xa2−1

4 | =

= 1 + (p2 − 2) + 2(a2 − 1)(p2 − 1) = (2a2 − 1)(p2 − 1)

элементов. Поэтому по лемме 2 получаем L(2pa22 ) > (2a2 − 1)(p2 − 1).

Во втором варианте для доказательства верхней оценки нужно предста-
вить T (n) в виде объединения (2a2−1)(p2−1)+(2a1−2) арифметических
прогрессий. Это можно сделать следующим образом:

T (n) = (1, 2) ∪ ((2, 2p2) ∪ (4, 2p2) ∪ (6, 2p2) ∪ . . . ∪ (2p2 − 4, 2p2))∪

∪((4p2 − 2, 8p2) ∪ (8p2 − 2, 16p2) ∪ . . . ∪ ((2a1−1p2 − 2, 2a1p2))∪

∪((2a1p2 − 2, 2a1p22) ∪ (2a1p22 − 2, 2a1p32) ∪ . . . ∪ (2a1pa2−1
2 − 2, 2a1pa22 ))∪

∪((2 · 2a1p2 − 2, 2a1p22) ∪ (2 · 2a1p22 − 2, 2a1p32) ∪ . . .∪

∪(2 · 2a1pa2−1
2 − 2, 2a1pa22 )) ∪ . . . ∪ (((p2 − 1)2a1p2 − 2, 2a1p22)∪

∪((p2 − 1)2a1p22 − 2, 2a1p32) ∪ . . . ∪ ((p2 − 1)2a1pa2−1
2 − 2, 2a1pa22 ))∪

∪((4p2, 8p2) ∪ (8p2, 16p2) ∪ . . . ∪ ((2a1−1p2, 2
a1p2))∪
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∪((2a1p2, 2a1p22) ∪ (2a1p22, 2
a1p32) ∪ . . . ∪ (2a1pa2−1

2 , 2a1pa22 ))∪
∪((2 · 2a1p2, 2a1p22) ∪ (2 · 2a1p22, 2a1p32) ∪ . . . ∪ (2 · 2a1pa2−1

2 , 2a1pa22 ))∪
∪ . . . ∪ (((p2 − 1)2a1p2, 2

a1p22) ∪ ((p2 − 1)2a1p22, 2
a1p32)∪

∪ . . . ∪ ((p2 − 1)2a1pa2−1
2 , 2a1pa22 )) ∪ ((2p2 − 2, 4p2) ∪ (2p2, 4p2)).

Видно, что здесь

1 + (p2 − 2) + 2(a1 − 2) + 2(a1 − 1)(p2 − 1) + 2 =

= (2a2 − 1)(p2 − 1) + (2a1 − 2)

прогрессий. Множество

(2, 2p2) ∪ (4, 2p2) ∪ (6, 2p2) ∪ . . . ∪ (2p2 − 4, 2p2)

покрывает все четные числа, не дающие остатков 0 и p2 − 2 по модулю
p2. Множество

((4p2 − 2, 8p2) ∪ (8p2 − 2, 16p2) ∪ . . . ∪ ((2a1−1p2 − 2, 2a1p2))∪

∪((2a1p2 − 2, 2a1p22) ∪ (2a1p22 − 2, 2a1p32) ∪ . . . ∪ (2a1pa2−1
2 − 2, 2a1pa22 ))∪

∪((2 ·2a1p2−2, 2a1p22)∪ (2 ·2a1p22−2, 2a1p32)∪ . . .∪ (2 ·2a1pa2−1
2 −2, 2a1pa22 ))∪

∪ . . . ∪ (((p2 − 1)2a1p2 − 2, 2a1p22) ∪ ((p2 − 1)2a1p22 − 2, 2a1p32)∪
∪ . . . ∪ ((p2 − 1)2a1pa2−1

2 − 2, 2a1pa22 ))

покрывает все числа, дающие остаток 2 по модулю 4, дающие остаток
p2 − 2 по модулю p2 и не дающие остатка 2a1pa22 − 2 по модулю 2a1pa22 . И
множество

((4p2, 8p2) ∪ (8p2, 16p2) ∪ . . . ∪ ((2a1−1p2, 2
a1p2))∪

∪((2a1p2, 2a1p22) ∪ (2a1p22, 2
a1p32) ∪ . . . ∪ (2a1pa2−1

2 , 2a1pa22 ))∪
∪((2 · 2a1p2, 2a1p22) ∪ (2 · 2a1p22, 2a1p32) ∪ . . . ∪ (2 · 2a1pa2−1

2 , 2a1pa22 ))∪
∪ . . . ∪ (((p2 − 1)2a1p2, 2

a1p22) ∪ ((p2 − 1)2a1p22, 2
a1p32)∪

∪ . . . ∪ ((p2 − 1)2a1pa2−1
2 , 2a1pa22 )))

покрывает все числа, дающие остаток 0 по модулю 4, дающие остаток 0

по модулю p2 и не дающие остатка 0 по модулю 2a1pa22 . Множество

(2p2 − 2, 4p2)
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покрывает все числа, дающие остаток 0 по модулю 4 и дающие остаток
p2 − 2 по модулю p2. Наконец, множество

(2p2, 4p2)

покрывает все числа, дающие остаток 2 по модулю 4 и дающие остаток
0 по модулю p2. Поэтому

L(2pa22 ) 6 (2a2 − 1)(p2 − 1) + (2a1 − 2).

Для доказательства нижней оценки введем обозначения

X1 := {pa22 },

X2 := {4pa22 − 2, 8pa22 − 2, . . . , 2a1−1pa22 − 2},
X3 := {4pa22 , 8pa22 , . . . , 2a1−1pa22 },

X1
4 := {2a1p2 − 2, 2 · 2a1p2 − 2, . . . , (a2 − 1)2a1p2 − 2},

X2
4 := {2a1p22 − 2, 2 · 2a1p22 − 2, . . . , (a2 − 1)2a1p22 − 2},

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Xa2−1
4 := {2a1pa2−1

2 − 2, 2 · 2a1pa2−1
2 − 2, . . . , (a2 − 1)2a1pa2−1

2 − 2},
X1

5 := {2a1p2, 2 · 2a1p2, . . . , (a2 − 1)2a1p2},
X2

5 := {2a1p22, 2 · 2a1p22, . . . , (a2 − 1)2a1p22},
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Xa2−1
5 := {2a1pa2−1

2 , 2 · 2a1pa2−1
2 , . . . , (a2 − 1)2a1pa2−1

2 },
X6 := {a, b, c1, . . . , cp2−3, cp2−1},

Y := (2a2pa22 − 2, 2a2pa22 ) ∪ (2a2pa22 , 2
a2pa22 ),

где a ≡ 0 mod 2a1 , a ≡ −2 mod pa22 , b ≡ −2 mod 2a1 , b ≡ 0 mod pa22 ,

ci ≡ 0 mod 2a1 , ci ≡ i mod pa22 . Покажем, что множество

X := X1 ∪X2 ∪X3 ∪X1
4 ∪ . . . ∪Xa2−1

4 ∪X1
5 ∪ . . . ∪Xa2−1

5 ∪X6

будет опорным семейством для множества Y. Пусть x1, x2 ∈ X, x1 < x2.

Нужно доказать, что выполнено хотя бы одно из двух условий:

(x1, x2 − x1) ∩ (2a1pa22 − 2, 2a1pa22 ) 6= ∅, (5)
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(x1, x2 − x1) ∩ (2a1pa22 , 2
a1pa22 ) 6= ∅. (6)

Возможны случаи:
Случай 1.
x1 ∈ X1, x2 ∈ X2 или x2 ∈ X1, x1 ∈ X2. Тогда НОД(x2 − x1, 2a1pa22 ) = 1 и
по лемме 1 верно (5).

Случай 2.
x1 ∈ X1, x2 ∈ X3 или x2 ∈ X1, x1 ∈ X3. Тогда НОД(x2 − x1, 2a1pa22 ) = pa22
и по лемме 1 верно (6).

Случай 3.
x1 ∈ X1, x2 ∈ Xi

4 или x2 ∈ X1, x1 ∈ Xi
4. Тогда НОД(x2 − x1, 2a1pa22 ) = 1 и

по лемме 1 верно (5).

Случай 4.
x1 ∈ X1, x2 ∈ Xi

5 или x2 ∈ X1, x1 ∈ Xi
5. Тогда НОД(x2 − x1, 2a1pa22 ) = pi2

и по лемме 1 верно (6).

Случай 5.
x1 ∈ X1, x2 = a или x2 ∈ X1, x1 = a. Тогда НОД(x2 − x1, 2a1pa22 ) = 1 и по
лемме 1 верно (5).

Случай 6.
x1 ∈ X1, x2 = b или x2 ∈ X1, x1 = b. Тогда НОД(x2 − x1, 2a1pa22 ) = pa22 и
по лемме 1 верно (6).

Случай 7.
x1 ∈ X1, x2 = ci или x2 ∈ X1, x1 = ci. Тогда НОД(x2 − x1, 2a1pa22 ) = 1 и
по лемме 1 верно (5).

Случай 8.
x1 ∈ X2, x2 ∈ X2, то есть x1 = 2i1pa22 − 2, x2 = 2i2pa22 − 2. Тогда верно
НОД(x2 − x1, 2pa22 ) = 2i1pa22 и по лемме 1 получаем (5).

Случай 9.
x1 ∈ X2, x2 ∈ X3 или x2 ∈ X2, x1 ∈ X3. Тогда НОД(x2 − x1, 2a1pa22 ) = 2 и
по лемме 1 верно (5).

Случай 10.
x1 ∈ X2, x2 ∈ Xi

4 или x2 ∈ X2, x1 ∈ Xi
4. Пусть элемент из X2 равен

2jpa22 − 2. Тогда имеет место НОД(x2 − x1, 2a1pa22 ) = 2jpi2 и по лемме 1

верно (5).

Случай 11.
x1 ∈ X2, x2 ∈ Xi

5 или x2 ∈ X2, x1 ∈ Xi
5. Тогда НОД(x2 − x1, 2a1pa22 ) = 2 и

по лемме 1 верно (5).

Случай 12.
x1 ∈ X2, x2 = a или x2 ∈ X2, x1 = a. Тогда НОД(x2 − x1, 2a1pa22 ) = 2pa22 и
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по лемме 1 верно (5).

Случай 13.
x1 ∈ X2, x2 = b или x2 ∈ X2, x1 = b. Пусть элемент из X2 равен 2jpa22 − 2.

Тогда имеет место НОД(x2 − x1, 2a1pa22 ) = 2j и по лемме 1 верно (5).

Случай 14.
x1 ∈ X2, x2 = ci или x2 ∈ X2, x1 = ci. Тогда НОД(x2 − x1, 2a1pa22 ) = 2 и
по лемме 1 верно (5).

Случай 15.
x1 ∈ X3, x2 ∈ X3, то есть x1 = 2i1pa22 , x2 = 2i2pa22 . Тогда верно, что
НОД(x2 − x1, 2pa22 ) = 2i1pa22 и по лемме 1 получаем (6).

Случай 16.
x1 ∈ X3, x2 ∈ Xi

4 или x2 ∈ X3, x1 ∈ Xi
4. Тогда НОД(x2 − x1, 2a1pa22 ) = 2 и

по лемме 1 верно (5).

Случай 17.
x1 ∈ X3, x2 ∈ Xi

5 или x2 ∈ X3, x1 ∈ Xi
5. Пусть элемент из X3 равен 2jpa22 .

Тогда имеет место НОД(x2 − x1, 2a1pa22 ) = 2jpi2 и по лемме 1 верно (6).

Случай 18.
x1 ∈ X3, x2 = a или x2 ∈ X3, x1 = a. Пусть элемент из X3 равен 2jpa22 .

Тогда имеет место равенство НОД(x2 − x1, 2
a1pa22 ) = 2j и по лемме 1

верно (6).

Случай 19.
x1 ∈ X3, x2 = b или x2 ∈ X3, x1 = b. Тогда НОД(x2 − x1, 2a1pa22 ) = 2pa22 и
по лемме 1 верно (6).

Случай 20.
x1 ∈ X3, x2 = ci или x2 ∈ X3, x1 = ci. Пусть элемент из X3 равен 2jpa22 .

Тогда имеет место равенство НОД(x2 − x1, 2
a1pa22 ) = 2j и по лемме 1

верно (6).

Случай 21.
x1 ∈ Xi

4, x2 ∈ Xi
4. Тогда НОД(x2 − x1, 2a1pa22 ) = 2a1pi2 и по лемме 1 верно

(5).

Случай 22.
x1 ∈ Xi

4, x2 ∈ Xj
4 , i < j. Случай аналогичен предыдущему.

Случай 23.
x1 ∈ Xi

4, x2 ∈ Xj
4 , i > j. Тогда НОД(x2 − x1, 2a1pa22 ) = 2a1pj2 и по лемме 1

верно (5).

Случай 24.
x1 ∈ Xi

4, x2 ∈ Xj
5 . Тогда НОД(x2− x1, 2a1pa22 ) = 2 и по лемме 1 верно (5).

Случай 25.
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x1 ∈ Xi
4, x2 = a или x2 ∈ Xi

4, x1 = a. Тогда НОД(x2 − x1, 2a1pa22 ) = 2pi2 и
по лемме 1 верно (5).

Случай 26.
x1 ∈ Xi

4, x2 = b или x2 ∈ Xi
4, x1 = b. Тогда НОД(x2 − x1, 2a1pa22 ) = 2a1 и

по лемме 1 верно (5).

Случай 27.
x1 ∈ Xi

4, x2 = ci или x2 ∈ Xi
4, x1 = ci. Тогда НОД(x2 − x1, 2a1pa22 ) = 2 и

по лемме 1 верно (5).

Случай 28.
x1 ∈ Xi

5, x2 ∈ Xi
5. Тогда НОД(x2 − x1, 2a1pa22 ) = 2a1pi2 и по лемме 1 верно

(6).

Случай 29.
x1 ∈ Xi

5, x2 ∈ Xj
5 , i < j. Случай аналогичен предыдущему.

Случай 30. x1 ∈ Xi
5, x2 ∈ Xj

5 , i > j. Тогда НОД(x2 − x1, 2a1pa22 ) = 2a1pj2 и
по лемме 1 верно (6).

Случай 31.
x1 ∈ Xi

5, x2 = a или x2 ∈ Xi
5, x1 = a. Тогда НОД(x2 − x1, 2a1pa22 ) = 2a1 и

по лемме 1 верно (6).

Случай 32.
x1 ∈ Xi

5, x2 = b или x2 ∈ Xi
5, x1 = b. Тогда НОД(x2 − x1, 2a1pa22 ) = 2pi2 и

по лемме 1 верно (6).

Случай 33.
x1 ∈ Xi

5, x2 = ci или x2 ∈ Xi
5, x1 = ci. Тогда НОД(x2 − x1, 2a1pa22 ) = 2a1 и

по лемме 1 верно (6).

Случай 34.
x1 = a, x2 = b или x2 = a, x1 = b. Тогда НОД(x2 − x1, 2a1pa22 ) = 2 и по
лемме 1 верно (5).

Случай 35.
x1 = a, x2 = c или x2 = a, x1 = c. Тогда НОД(x2 − x1, 2a1pa22 ) = 2a1 и по
лемме 1 верно (6).

Случай 36.
x1 = b, x2 = c или x2 = b, x1 = c. Тогда НОД(x2 − x1, 2a1pa22 ) = 2 и по
лемме 1 верно (5).

Разбор случаев завершен. Мы показали, что множествоX будет опорным
семейством для Y. Но в множестве X всего

|X1|+ |X2|+ |X3|+ |X1
4 |+ . . .+ |Xa2−1

4 |+ |X1
5 |+ . . .+ |Xa2−1

5 |+ |X6| =

= 1 + 2(a1 − 2) + 2(a2 − 1)(p2 − 1) + 2 + (p2 − 2) =
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= (2a2 − 1)(p2 − 1) + 2(a1 − 1)

элементов. Поэтому по лемме 2 получаем

L(2pa22 ) > (2a2 − 1)(p2 − 1) + 2(a1 − 1).

В случае, когда p1 = 2, t = 2, утверждение теоремы доказано.
Пусть p1 = 2, t > 2, a1 = 1. Докажем тогда, что

L(n) = L(2pa22 . . . patt ) = (2a2 − 1)(p2 − 1) + . . .+ (2at − 1)(pt − 1) + 1.

для доказательства верхней оценки нужно представить T (n) в виде объ-
единения

(2a2 − 1)(p2 − 1) + . . .+ (2at − 1)(pt − 1) + 1

арифметических прогрессий. Это можно сделать следующим образом:

T (n) = (1, 2) ∪ ((2, 2p2) ∪ (4, 2p2) ∪ (6, 2p2) ∪ . . . ∪ (2p2 − 4, 2p2))∪

∪((2, 2p3) ∪ (4, 2p3) ∪ (6, 2p3) ∪ . . . ∪ (2p3 − 4, 2p3)) ∪ . . .∪
∪((2, 2pt) ∪ (4, 2pt) ∪ (6, 2pt) ∪ . . . ∪ (2pt − 4, 2pt))∪

∪((1 · 2p2p3 . . . pt − 2, 2p22p3 . . . pt) ∪ (2 · 2p2p3 . . . pt − 2, 2p22p3 . . . pt)∪
∪ . . . ∪ ((p2 − 1) · 2p2p3 . . . pt − 2, 2p22p3 . . . pt))∪

∪((1 · 2p22p3 . . . pt − 2, 2p32p3 . . . pt) ∪ (2 · 2p22p3 . . . pt − 2, 2p32p3 . . . pt)∪
∪ . . . ∪ ((p2 − 1) · 2p22p3 . . . pt − 2, 2p32p3 . . . pt))∪

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∪((1 · 2pa2−1
2 p3 . . . pt − 2, 2pa22 p3 . . . pt)∪

∪(2 · 2pa2−1
2 p3 . . . pt − 2, 2pa22 p3 . . . pt) ∪ . . .∪

∪((p2 − 1) · 2pa2−1
2 p3 . . . pt − 2, 2pa22 p3 . . . pt))∪

∪((1 · 2pa22 p3 . . . pt − 2, 2pa22 p
2
3p4 . . . pt)∪

∪(2 · 2pa22 p3 . . . pt − 2, 2pa22 p
2
3p4 . . . pt)∪

∪ . . . ∪ ((p3 − 1) · 2pa22 p3 . . . pt − 2, 2pa22 p
2
3p4 . . . pt))∪

∪((1 · 2pa22 p23p4 . . . pt − 2, 2pa22 p
3
3p4 . . . pt)∪

∪(2 · 2pa22 p23p4 . . . pt − 2, 2pa22 p
3
3p4 . . . pt)∪
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∪ . . . ∪ ((p3 − 1) · 2pa22 p23p4 . . . pt − 2, 2pa22 p
3
3p4 . . . pt))∪

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∪((1 · 2pa22 pa3−1
3 p4 . . . pt − 2, 2pa22 p

a3
3 p4 . . . pt)∪

∪(2 · 2pa22 pa3−1
3 p4 . . . pt − 2, 2pa22 p

3
3a3p4 . . . pt)∪

∪ . . . ∪ ((p3 − 1) · 2pa22 pa3−1
3 p4 . . . pt − 2, 2pa22 p

a3
3 p4 . . . pt))∪

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∪((1 · 2pa22 . . . p
at−1

t−1 pt − 2, 2pa22 . . . p
at−1

t−1 p
2
t )∪

∪(2 · 2pa22 . . . p
at−1

t−1 pt − 2, 2pa22 . . . p
at−1

t−1 p
2
t )∪

∪ . . . ∪ ((pt − 1) · 2pa22 . . . p
at−1

t−1 pt − 2, 2pa22 . . . p
at−1

t−1 p
2
t ))∪

∪((1 · 2pa22 . . . p
at−1

t−1 p
2
t − 2, 2pa22 . . . p

at−1

t−1 p
3
t )∪

∪(2 · 2pa22 . . . p
at−1

t−1 p
2
t − 2, 2pa22 . . . p

at−1

t−1 p
3
t )∪

∪ . . . ∪ ((pt − 1) · 2pa22 . . . p
at−1

t−1 p
2
t − 2, 2pa22 . . . p

at−1

t−1 p
3
t ))∪

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∪((1 · 2pa22 . . . p
at−1

t−1 p
at−1
t − 2, 2pa22 . . . p

at−1

t−1 p
at
t )∪

∪(2 · 2pa22 . . . p
at−1

t−1 p
at−1
t − 2, 2pa22 . . . p

at−1

t−1 p
at
t ) ∪ . . .∪

∪((pt − 1) · 2pa22 . . . p
at−1

t−1 p
at−1
t − 2, 2pa22 . . . p

at−1

t−1 p
at
t ))∪

∪((1 · 2p2p3 . . . pt, 2p22p3 . . . pt) ∪ (2 · 2p2p3 . . . pt, 2p22p3 . . . pt) ∪ . . .∪
∪((p2 − 1) · 2p2p3 . . . pt, 2p22p3 . . . pt))∪

∪((1 · 2p22p3 . . . pt, 2p32p3 . . . pt) ∪ (2 · 2p22p3 . . . pt, 2p32p3 . . . pt)∪
∪ . . . ∪ ((p2 − 1) · 2p22p3 . . . pt, 2p32p3 . . . pt))∪

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∪((1 · 2pa2−1
2 p3 . . . pt, 2p

a2
2 p3 . . . pt)∪

∪(2 · 2pa2−1
2 p3 . . . pt, 2p

a2
2 p3 . . . pt)∪

∪ . . . ∪ ((p2 − 1) · 2pa2−1
2 p3 . . . pt, 2p

a2
2 p3 . . . pt))∪

∪((1 · 2pa22 p3 . . . pt, 2pa22 p23p4 . . . pt)∪
∪(2 · 2pa22 p3 . . . pt, 2pa22 p23p4 . . . pt)∪

∪ . . . ∪ ((p3 − 1) · 2pa22 p3 . . . pt, 2pa22 p23p4 . . . pt))∪
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∪((1 · 2pa22 p23p4 . . . pt, 2pa22 p33p4 . . . pt)∪

∪(2 · 2pa22 p23p4 . . . pt, 2pa22 p33p4 . . . pt)∪

∪ . . . ∪ ((p3 − 1) · 2pa22 p23p4 . . . pt, 2pa22 p33p4 . . . pt))∪

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∪((1 · 2pa22 pa3−1
3 p4 . . . pt, 2p

a2
2 p

a3
3 p4 . . . pt)∪

∪(2 · 2pa22 pa3−1
3 p4 . . . pt, 2p

a2
2 p

3
3a3p4 . . . pt)∪

∪ . . . ∪ ((p3 − 1) · 2pa22 pa3−1
3 p4 . . . pt, 2p

a2
2 p

a3
3 p4 . . . pt))∪

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∪((1 · 2pa22 . . . p
at−1

t−1 pt, 2p
a2
2 . . . p

at−1

t−1 p
2
t )∪

∪(2 · 2pa22 . . . p
at−1

t−1 pt, 2p
a2
2 . . . p

at−1

t−1 p
2
t )∪

∪ . . . ∪ ((pt − 1) · 2pa22 . . . p
at−1

t−1 pt, 2p
a2
2 . . . p

at−1

t−1 p
2
t ))∪

∪((1 · 2pa22 . . . p
at−1

t−1 p
2
t , 2p

a2
2 . . . p

at−1

t−1 p
3
t )∪

∪(2 · 2pa22 . . . p
at−1

t−1 p
2
t , 2p

a2
2 . . . p

at−1

t−1 p
3
t )∪

∪ . . . ∪ ((pt − 1) · 2pa22 . . . p
at−1

t−1 p
2
t , 2p

a2
2 . . . p

at−1

t−1 p
3
t ))∪

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∪((1 · 2pa22 . . . p
at−1

t−1 p
at−1
t , 2pa22 . . . p

at−1

t−1 p
at
t )∪

∪(2 · 2pa22 . . . p
at−1

t−1 p
at−1
t , 2pa22 . . . p

at−1

t−1 p
at
t )∪

∪ . . . ∪ ((pt − 1) · 2pa22 . . . p
at−1

t−1 p
at−1
t , 2pa22 . . . p

at−1

t−1 p
at
t ))∪

∪(2a1, 2p2pt) ∪ (2a2, 2p2p3) ∪ . . . ∪ (2at−1, 2pt−1pt),

где при i = 1 имеем 1 6 a1 6 p2pt, a1 ≡ 0 mod pt, a1 ≡ −1 mod p2 и при
2 6 i 6 t− 1 имеем 1 6 ai 6 pipi+1, ai ≡ 0 mod pi, ai ≡ −1 mod pi+1.

Здесь серия

((2, 2p2) ∪ (4, 2p2) ∪ (6, 2p2) ∪ . . . ∪ (2p2 − 4, 2p2))∪

∪((2, 2p3) ∪ (4, 2p3) ∪ (6, 2p3) ∪ . . . ∪ (2p3 − 4, 2p3)) ∪ . . .∪

∪((2, 2pt) ∪ (4, 2pt) ∪ (6, 2pt) ∪ . . . ∪ (2pt − 4, 2pt))
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накрывает все четные числа, не сравнимые с 0 и −2 по модулям p2, . . . , pt.
Серия

((1 · 2p2p3 . . . pt − 2, 2p22p3 . . . pt) ∪ (2 · 2p2p3 . . . pt − 2, 2p22p3 . . . pt)∪

∪ . . . ∪ ((p2 − 1) · 2p2p3 . . . pt − 2, 2p22p3 . . . pt))∪
∪((1 · 2p22p3 . . . pt − 2, 2p32p3 . . . pt) ∪ (2 · 2p22p3 . . . pt − 2, 2p32p3 . . . pt)∪

∪ . . . ∪ ((p2 − 1) · 2p22p3 . . . pt − 2, 2p32p3 . . . pt))∪
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∪((1 · 2pa2−1
2 p3 . . . pt − 2, 2pa22 p3 . . . pt)∪

∪(2 · 2pa2−1
2 p3 . . . pt − 2, 2pa22 p3 . . . pt)∪

∪ . . . ∪ ((p2 − 1) · 2pa2−1
2 p3 . . . pt − 2, 2pa22 p3 . . . pt))∪

∪((1 · 2pa22 p3 . . . pt − 2, 2pa22 p
2
3p4 . . . pt)∪

∪(2 · 2pa22 p3 . . . pt − 2, 2pa22 p
2
3p4 . . . pt)∪

∪ . . . ∪ ((p3 − 1) · 2pa22 p3 . . . pt − 2, 2pa22 p
2
3p4 . . . pt))∪

∪((1 · 2pa22 p23p4 . . . pt − 2, 2pa22 p
3
3p4 . . . pt)∪

∪(2 · 2pa22 p23p4 . . . pt − 2, 2pa22 p
3
3p4 . . . pt)∪

∪ . . . ∪ ((p3 − 1) · 2pa22 p23p4 . . . pt − 2, 2pa22 p
3
3p4 . . . pt))∪

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∪((1 · 2pa22 pa3−1
3 p4 . . . pt − 2, 2pa22 p

a3
3 p4 . . . pt)∪

∪(2 · 2pa22 pa3−1
3 p4 . . . pt − 2, 2pa22 p

3
3a3p4 . . . pt)∪

∪ . . . ∪ ((p3 − 1) · 2pa22 pa3−1
3 p4 . . . pt − 2, 2pa22 p

a3
3 p4 . . . pt))∪

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∪((1 · 2pa22 . . . p
at−1

t−1 pt − 2, 2pa22 . . . p
at−1

t−1 p
2
t )∪

∪(2 · 2pa22 . . . p
at−1

t−1 pt − 2, 2pa22 . . . p
at−1

t−1 p
2
t )∪

∪ . . . ∪ ((pt − 1) · 2pa22 . . . p
at−1

t−1 pt − 2, 2pa22 . . . p
at−1

t−1 p
2
t ))∪

∪((1 · 2pa22 . . . p
at−1

t−1 p
2
t − 2, 2pa22 . . . p

at−1

t−1 p
3
t )∪

∪(2 · 2pa22 . . . p
at−1

t−1 p
2
t − 2, 2pa22 . . . p

at−1

t−1 p
3
t ) ∪ . . .∪

∪((pt − 1) · 2pa22 . . . p
at−1

t−1 p
2
t − 2, 2pa22 . . . p

at−1

t−1 p
3
t ))∪
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∪((1 · 2pa22 . . . p
at−1

t−1 p
at−1
t − 2, 2pa22 . . . p

at−1

t−1 p
at
t )∪

∪(2 · 2pa22 . . . p
at−1

t−1 p
at−1
t − 2, 2pa22 . . . p

at−1

t−1 p
at
t )∪

∪ . . . ∪ ((pt − 1) · 2pa22 . . . p
at−1

t−1 p
at−1
t − 2, 2pa22 . . . p

at−1

t−1 p
at
t ))

накрывает все четные числа, сравнимые с −2 по модулям p2, . . . , pt, но
не сравнимые с −2 по модулю 2pa22 . . . patt . Серия

((1 · 2p2p3 . . . pt, 2p22p3 . . . pt) ∪ (2 · 2p2p3 . . . pt, 2p22p3 . . . pt)∪

∪ . . . ∪ ((p2 − 1) · 2p2p3 . . . pt, 2p22p3 . . . pt))∪
∪((1 · 2p22p3 . . . pt, 2p32p3 . . . pt) ∪ (2 · 2p22p3 . . . pt, 2p32p3 . . . pt)∪

∪ . . . ∪ ((p2 − 1) · 2p22p3 . . . pt, 2p32p3 . . . pt))∪
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∪((1 · 2pa2−1
2 p3 . . . pt, 2p

a2
2 p3 . . . pt)∪

∪(2 · 2pa2−1
2 p3 . . . pt, 2p

a2
2 p3 . . . pt)∪

∪ . . . ∪ ((p2 − 1) · 2pa2−1
2 p3 . . . pt, 2p

a2
2 p3 . . . pt))∪

∪((1 · 2pa22 p3 . . . pt, 2pa22 p23p4 . . . pt)∪
∪(2 · 2pa22 p3 . . . pt, 2pa22 p23p4 . . . pt)∪

∪ . . . ∪ ((p3 − 1) · 2pa22 p3 . . . pt, 2pa22 p23p4 . . . pt))∪
∪((1 · 2pa22 p23p4 . . . pt, 2pa22 p33p4 . . . pt)∪
∪(2 · 2pa22 p23p4 . . . pt, 2pa22 p33p4 . . . pt)∪

∪ . . . ∪ ((p3 − 1) · 2pa22 p23p4 . . . pt, 2pa22 p33p4 . . . pt))∪
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∪((1 · 2pa22 pa3−1
3 p4 . . . pt, 2p

a2
2 p

a3
3 p4 . . . pt)∪

∪(2 · 2pa22 pa3−1
3 p4 . . . pt, 2p

a2
2 p

3
3a3p4 . . . pt)∪

∪ . . . ∪ ((p3 − 1) · 2pa22 pa3−1
3 p4 . . . pt, 2p

a2
2 p

a3
3 p4 . . . pt))∪

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∪((1 · 2pa22 . . . p
at−1

t−1 pt, 2p
a2
2 . . . p

at−1

t−1 p
2
t )∪

∪(2 · 2pa22 . . . p
at−1

t−1 pt, 2p
a2
2 . . . p

at−1

t−1 p
2
t )∪
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∪ . . . ∪ ((pt − 1) · 2pa22 . . . p
at−1

t−1 pt, 2p
a2
2 . . . p

at−1

t−1 p
2
t ))∪

∪((1 · 2pa22 . . . p
at−1

t−1 p
2
t , 2p

a2
2 . . . p

at−1

t−1 p
3
t )∪

∪(2 · 2pa22 . . . p
at−1

t−1 p
2
t , 2p

a2
2 . . . p

at−1

t−1 p
3
t )∪

∪ . . . ∪ ((pt − 1) · 2pa22 . . . p
at−1

t−1 p
2
t , 2p

a2
2 . . . p

at−1

t−1 p
3
t ))∪

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∪((1 · 2pa22 . . . p
at−1

t−1 p
at−1
t , 2pa22 . . . p

at−1

t−1 p
at
t )∪

∪(2 · 2pa22 . . . p
at−1

t−1 p
at−1
t , 2pa22 . . . p

at−1

t−1 p
at
t )∪

∪ . . . ∪ ((pt − 1) · 2pa22 . . . p
at−1

t−1 p
at−1
t , 2pa22 . . . p

at−1

t−1 p
at
t ))

накрывает все четные числа, сравнимые с 0 по модулям 2p2, . . . , 2pt, но
не сравнимые с 0 по модулю 2pa22 . . . patt . Наконец, серия

(2a1, 2p2pt) ∪ (2a2, 2p2p3) ∪ . . . ∪ (2at−1, 2pt−1pt)

накрывает все четные числа, сравнимые с 0 или −2 по модулям p2, . . . , pt,
но не сравнимые с 0 или −2 по модулю 2p2 . . . pt. Поэтому

L(n) 6 1 +
t∑

i=2

(pi − 2) + 2
t∑

i=2

(ai − 1)(pi − 1) + (t− 1) =

= (2a2 − 1)(p2 − 1) + . . .+ (2at − 1)(pt − 1) + 1.

Для доказательства нижней оценки введем обозначения

X1 := {pa22 . . . patt },

X2,1
2 := {1·2p2pa33 . . . patt −2, 2·2p2pa33 . . . patt −2, . . . , (p2−1)·2p2pa33 . . . patt −2},

X2,2
2 := {1·2p22pa33 . . . patt −2, 2·2p22pa33 . . . patt −2, . . . , (p2−1)·2p22pa33 . . . patt −2},

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

X2,a2−1
2 := {1 · 2pa2−1

2 pa33 . . . patt − 2, . . . , (p2 − 1) · 2pa2−1
2 pa33 . . . patt − 2},

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Xt,1
2 := {1 · 2pa22 . . . p

at−1

t−1 pt − 2, . . . , (pt − 1) · 2pa22 . . . p
at−1

t−1 pt − 2},

Xt,2
2 := {1 · 2pa22 . . . p

at−1

t−1 p
2
t − 2, . . . , (pt − 1) · 2pa22 . . . p

at−1

t−1 p
2
t − 2},

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Xt,at−1
2 := {1 · 2pa22 . . . p

at−1

t−1 p
at−1−1
t − 2, . . . , (pt − 1) · 2pa22 . . . p

at−1

t−1 p
at−1
t − 2},

X2,1
3 := {1 · 2p2pa33 . . . patt , 2 · 2p2pa33 . . . patt , . . . , (p2 − 1) · 2p2pa33 . . . patt },

X2,2
3 := {1 · 2p22pa33 . . . patt , 2 · 2p22pa33 . . . patt , . . . , (p2 − 1) · 2p22pa33 . . . patt },

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

X2,a2−1
3 := {1 · 2pa2−1

2 pa33 . . . patt , . . . , (p2 − 1) · 2pa2−1
2 pa33 . . . patt },

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Xt,1
3 := {1 · 2pa22 . . . p

at−1

t−1 pt, 2 · 2pa22 . . . p
at−1

t−1 pt, . . . , (pt − 1) · 2pa22 . . . p
at−1

t−1 pt},

Xt,2
3 := {1 · 2pa22 . . . p

at−1

t−1 p
2
t , 2 · 2pa22 . . . p

at−1

t−1 p
2
t , . . . , (pt − 1) · 2pa22 . . . p

at−1

t−1 p
2
t },

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Xt,at−1
3 := {1 · 2pa22 . . . p

at−1

t−1 p
at−1−1
t , . . . , (pt − 1) · 2pa22 . . . p

at−1

t−1 p
at−1
t },

X2
4 := {2b2,1, . . . , 2b2,p2−2},
. . . . . . . . . . . . . . . . . . . . . . . .

Xt
4 := {2bt,1, . . . , 2bt,pt−2},

X5 := {2c2, . . . , 2ct−1, 2ct},
Y := (2pa22 . . . patt − 2, 2pa22 . . . patt ) ∪ (2pa22 . . . patt , 2p

a2
2 . . . patt ),

где
bi,j ≡ j mod paii , bi,j ≡ 0 mod

n

2paii
,

ci ≡ −1 mod paii , ci ≡ 0 mod
n

2paii
.

Покажем, что множество

X := X1 ∪X2,1
2 ∪ . . . ∪Xt,at−1

2 ∪

∪X2,1
3 ∪ . . . ∪Xt,at−1

3 ∪X2
4 ∪ . . . ∪Xt

4 ∪X5

будет опорным семейством для множества Y. Пусть x1, x2 ∈ X, x1 < x2.

Нужно доказать, что выполнено хотя бы одно из двух условий:

(x1, x2 − x1) ∩ (n− 2, n) 6= ∅, (7)

(x1, x2 − x1) ∩ (n, n) 6= ∅. (8)
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Возможны случаи:
Случай 1.
x1 ∈ X1, x2 ∈ Xi,j

2 или x2 ∈ X1, x1 ∈ Xi,j
2 . Тогда НОД(x2 − x1, n) = 1 и

значит по лемме 1 верно (7).

Случай 2.
x1 ∈ X1, x2 ∈ Xi,j

3 или x2 ∈ X1, x1 ∈ Xi,j
3 . Тогда НОД(x2 − x1, n) = n

2p
ai
i

pji

и по лемме 1 верно (8).

Случай 3.
x1 ∈ X1, x2 ∈ Xi

4 или x2 ∈ X1, x1 ∈ Xi
4. Тогда НОД(x2 − x1, n) = n

2p
ai
i

и
по лемме 1 верно (8).

Случай 4.
x1 ∈ X1, x2 = ci или x2 ∈ X1, x1 = ci. Случай аналогичен предыдущему.
Случай 5.
x1 ∈ Xi,j1

2 , x2 ∈ Xi,j2
2 , j1 6 j2. Тогда НОД(x2 − x1, n) = n

p
ai
i

pj1i и по лемме
1 верно (7).

Случай 6.
x1 ∈ Xi,j1

2 , x2 ∈ Xi,j2
2 , j1 > j2. Тогда НОД(x2 − x1, n) = n

p
ai
i

pj2i и по лемме
1 верно (7).

Случай 7.
x1 ∈ Xi1,j1

2 , x2 ∈ Xi2,j2
2 , i1 6= i2. Тогда НОД(x2 − x1, n) = n

p
ai1
i1

p
ai2
i2

pj1i1p
j2
i2

и

по лемме 1 верно (7).

Случай 8.
x1 ∈ Xi1,j1

2 , x2 ∈ Xi2,j2
3 или x2 ∈ Xi1,j1

2 , x1 ∈ Xi2,j2
3 . Тогда верно, что

НОД(x2 − x1, n) = 2 и значит по лемме 1 получаем (7).

Случай 9.
x1 ∈ Xi,j

2 , x2 ∈ Xk
4 или x2 ∈ Xi,j

2 , x1 ∈ Xk
4 . Случай аналогичен предыду-

щему.
Случай 10.
x1 ∈ Xi,j

2 , x2 = ci или x2 ∈ Xi,j
2 , x1 = ci. Тогда НОД(x2−x1, n) = 2pji и по

лемме 1 верно (7).

Случай 11.
x1 ∈ Xi1,j

2 , x2 = ci2 , i1 6= i2 или x2 ∈ Xi1,j
2 , x1 = ci2 , i1 6= i2. Тогда

НОД(x2 − x1, n) = 2p
ai2
i2

и по лемме 1 верно (7).

Случай 12.
x1 ∈ Xi,j1

3 , x2 ∈ Xi,j2
3 , j1 6 j2. Случай аналогичен случаю 5.

Случай 13.
x1 ∈ Xi,j1

3 , x2 ∈ Xi,j2
3 , j1 > j2. Случай аналогичен случаю 6.
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Случай 14.
x1 ∈ Xi1,j1

3 , x2 ∈ Xi2,j2
3 , i1 6= i2. Случай аналогичен случаю 7.

Случай 15.
x1 ∈ Xi,j

3 , x2 ∈ Xi
4 или x2 ∈ Xi,j

3 , x1 ∈ Xi
4. Тогда НОД(x2 − x1, n) = n

p
ai
i

и
по лемме 1 верно (8).

Случай 16.
x1 ∈ Xi,j

3 , x2 ∈ Xk
4 , i 6= k или x2 ∈ Xi,j

3 , x1 ∈ Xi
4, i 6= k. Тогда

НОД(x2 − x1, n) = n
p
ai
i p

ak
k

pji и по лемме 1 верно (8).

Случай 17.
x1 ∈ Xi,j

3 , x2 = ci или x2 ∈ Xi,j
2 , x1 = ci. Случай аналогичен случаю 15.

Случай 18.
x1 ∈ Xi,j

3 , x2 = ck, i 6= k или x2 ∈ Xi,j
3 , x1 = ck, i 6= k. Случай аналогичен

случаю 16.
Случай 19.
x1 ∈ Xi

4, x2 ∈ Xi
4. Случай аналогичен случаю 15.

Случай 20.
x1 ∈ Xi

4, x2 ∈ Xj
4 , i 6= j. Тогда НОД(x2 − x1, n) = n

p
ai
i p

aj
j

и по лемме 1

верно (8).

Случай 21.
x1 ∈ Xi

4, x2 = ci или x1 ∈ Xi
4, x2 = ci. Случай аналогичен случаю 15.

Случай 22.
x1 ∈ Xi

4, x2 = cj , i 6= j или x2 ∈ Xi
4, x1 = cj , i 6= j. Случай аналогичен

случаю 20.
Случай 23.
x1 = ci, x2 = cj . Случай аналогичен случаю 20.
Разбор случаев завершен. Мы показали, что множество X будет опор-
ным семейством для Y. Но в множестве X всего

|X1|+|X2,1
2 |+. . .+|Xt,at−1

2 |+|X2,1
3 |+. . .+|Xt,at−1

3 |+|X2
4 |+. . .+|Xt

4|+|X5| =

= 1+2(p2−1)(a2−1)+. . .+2(pt−1)(at−1)+(p2−2)+. . .+(pt−2)+(t−1) =

= (2a2 − 1)(p2 − 1) + . . .+ (2at − 1)(pt − 1) + 1.

элементов. Поэтому по лемме 2 получаем

L(2pa22 . . . patt ) > (2a2 − 1)(p2 − 1) + . . .+ (2at − 1)(pt − 1) + 1.

В случае, когда p1 = 2, t > 2, a1 = 1, утверждение теоремы доказано.
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Пусть p1 = 2, t > 2, a1 > 1. Докажем тогда, что

L(n) = L(2a1pa22 . . . patt ) = (2a2−1)(p2−1)+. . .+(2at−1)(pt−1)+(2a1−2).

Для доказательства верхней оценки нужно представить T (n) в виде объ-
единения

(2a2 − 1)(p2 − 1) + . . .+ (2at − 1)(pt − 1) + (2a1 − 2)

арифметических прогрессий. Это можно сделать следующим образом:

T (n) = (1, 2) ∪ ((2, 2p2) ∪ (4, 2p2) ∪ (6, 2p2) ∪ . . . ∪ (2p2 − 4, 2p2))∪

∪((2, 2p3) ∪ (4, 2p3) ∪ (6, 2p3) ∪ . . . ∪ (2p3 − 4, 2p3)) ∪ . . .∪
∪((2, 2pt) ∪ (4, 2pt) ∪ (6, 2pt) ∪ . . . ∪ (2pt − 4, 2pt))∪
∪((4p2 . . . pt − 2, 8p2 . . . pt) ∪ (8p2 . . . pt − 2, 16p2 . . . pt)∪

∪ . . . ∪ (2a1−1p2 . . . pt − 2, 2a1p2 . . . pt))∪
∪((1 · 2a1p2p3 . . . pt − 2, 2a1p22p3 . . . pt)∪
∪(2 · 2a1p2p3 . . . pt − 2, 2a1p22p3 . . . pt)∪

∪ . . . ∪ ((p2 − 1) · 2a1p2p3 . . . pt − 2, 2a1p22p3 . . . pt))∪
∪((1 · 2a1p22p3 . . . pt − 2, 2p32p3 . . . pt)∪
∪(2 · 2a1p22p3 . . . pt − 2, 2a1p32p3 . . . pt)∪

∪ . . . ∪ ((p2 − 1) · 2a1p22p3 . . . pt − 2, 2a1p32p3 . . . pt))∪
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∪((1 · 2a1pa2−1
2 p3 . . . pt − 2, 2a1pa22 p3 . . . pt)∪

∪(2 · 2a1pa2−1
2 p3 . . . pt − 2, 2a1pa22 p3 . . . pt)∪

∪ . . . ∪ ((p2 − 1) · 2a1pa2−1
2 p3 . . . pt − 2, 2a1pa22 p3 . . . pt))∪

∪((1 · 2a1pa22 p3 . . . pt − 2, 2a1pa22 p
2
3p4 . . . pt)∪

∪(2 · 2a1pa22 p3 . . . pt − 2, 2a1pa22 p
2
3p4 . . . pt)∪

∪ . . . ∪ ((p3 − 1) · 2a1pa22 p3 . . . pt − 2, 2a1pa22 p
2
3p4 . . . pt))∪

∪((1 · 2a1pa22 p23p4 . . . pt − 2, 2a1pa22 p
3
3p4 . . . pt)∪

∪(2 · 2a1pa22 p23p4 . . . pt − 2, 2a1pa22 p
3
3p4 . . . pt)∪
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∪ . . . ∪ ((p3 − 1) · 2a1pa22 p23p4 . . . pt − 2, 2a1pa22 p
3
3p4 . . . pt))∪

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∪((1 · 2a1pa22 pa3−1
3 p4 . . . pt − 2, 2a1pa22 p

a3
3 p4 . . . pt)∪

∪(2 · 2a1pa22 pa3−1
3 p4 . . . pt − 2, 2a1pa22 p

3
3a3p4 . . . pt)∪

∪ . . . ∪ ((p3 − 1) · 2a1pa22 pa3−1
3 p4 . . . pt − 2, 2a1pa22 p

a3
3 p4 . . . pt))∪

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∪((1 · 2a1pa22 . . . p
at−1

t−1 pt − 2, 2a1pa22 . . . p
at−1

t−1 p
2
t )∪

∪(2 · 2a1pa22 . . . p
at−1

t−1 pt − 2, 2a1pa22 . . . p
at−1

t−1 p
2
t )∪

∪ . . . ∪ ((pt − 1) · 2a1pa22 . . . p
at−1

t−1 pt − 2, 2a1pa22 . . . p
at−1

t−1 p
2
t ))∪

∪((1 · 2a1pa22 . . . p
at−1

t−1 p
2
t − 2, 2a1pa22 . . . p

at−1

t−1 p
3
t )∪

∪(2 · 2a1pa22 . . . p
at−1

t−1 p
2
t − 2, 2a1pa22 . . . p

at−1

t−1 p
3
t )∪

∪ . . . ∪ ((pt − 1) · 2a1pa22 . . . p
at−1

t−1 p
2
t − 2, 2a1pa22 . . . p

at−1

t−1 p
3
t ))∪

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∪((1 · 2a1pa22 . . . p
at−1

t−1 p
at−1
t − 2, 2a1pa22 . . . p

at−1

t−1 p
at
t )∪

∪(2 · 2a1pa22 . . . p
at−1

t−1 p
at−1
t − 2, 2a1pa22 . . . p

at−1

t−1 p
at
t ) ∪ . . .∪

∪((pt − 1) · 2a1pa22 . . . p
at−1

t−1 p
at−1
t − 2, 2a1pa22 . . . p

at−1

t−1 p
at
t ))∪

∪((4p2 . . . pt, 8p2 . . . pt) ∪ (8p2 . . . pt, 16p2 . . . pt) ∪ . . .∪
∪(2a1−1p2 . . . pt, 2

a1p2 . . . pt))∪
∪((1 · 2a1p2p3 . . . pt, 2a1p22p3 . . . pt)∪
∪(2 · 2a1p2p3 . . . pt, 2a1p22p3 . . . pt)∪

∪ . . . ∪ ((p2 − 1) · 2a1p2p3 . . . pt, 2a1p22p3 . . . pt))∪
∪((1 · 2a1p22p3 . . . pt, 2p32p3 . . . pt)∪
∪(2 · 2a1p22p3 . . . pt, 2a1p32p3 . . . pt)∪

∪ . . . ∪ ((p2 − 1) · 2a1p22p3 . . . pt, 2a1p32p3 . . . pt))∪
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∪((1 · 2a1pa2−1
2 p3 . . . pt, 2

a1pa22 p3 . . . pt)∪
∪(2 · 2a1pa2−1

2 p3 . . . pt, 2
a1pa22 p3 . . . pt)∪
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∪ . . . ∪ ((p2 − 1) · 2a1pa2−1
2 p3 . . . pt, 2

a1pa22 p3 . . . pt))∪

∪((1 · 2a1pa22 p3 . . . pt, 2a1pa22 p23p4 . . . pt)∪

∪(2 · 2a1pa22 p3 . . . pt, 2a1pa22 p23p4 . . . pt)∪

∪ . . . ∪ ((p3 − 1) · 2a1pa22 p3 . . . pt, 2a1pa22 p23p4 . . . pt))∪

∪((1 · 2a1pa22 p23p4 . . . pt, 2a1pa22 p33p4 . . . pt)∪

∪(2 · 2a1pa22 p23p4 . . . pt, 2a1pa22 p33p4 . . . pt)∪

∪ . . . ∪ ((p3 − 1) · 2a1pa22 p23p4 . . . pt, 2a1pa22 p33p4 . . . pt))∪

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∪((1 · 2a1pa22 pa3−1
3 p4 . . . pt, 2

a1pa22 p
a3
3 p4 . . . pt)∪

∪(2 · 2a1pa22 pa3−1
3 p4 . . . pt, 2

a1pa22 p
3
3a3p4 . . . pt)∪

∪ . . . ∪ ((p3 − 1) · 2a1pa22 pa3−1
3 p4 . . . pt, 2

a1pa22 p
a3
3 p4 . . . pt))∪

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∪((1 · 2a1pa22 . . . p
at−1

t−1 pt, 2
a1pa22 . . . p

at−1

t−1 p
2
t )∪

∪(2 · 2a1pa22 . . . p
at−1

t−1 pt, 2
a1pa22 . . . p

at−1

t−1 p
2
t )∪

∪ . . . ∪ ((pt − 1) · 2a1pa22 . . . p
at−1

t−1 pt, 2
a1pa22 . . . p

at−1

t−1 p
2
t ))∪

∪((1 · 2a1pa22 . . . p
at−1

t−1 p
2
t , 2

a1pa22 . . . p
at−1

t−1 p
3
t )∪

∪(2 · 2a1pa22 . . . p
at−1

t−1 p
2
t , 2

a1pa22 . . . p
at−1

t−1 p
3
t )∪

∪ . . . ∪ ((pt − 1) · 2a1pa22 . . . p
at−1

t−1 p
2
t , 2

a1pa22 . . . p
at−1

t−1 p
3
t ))∪

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∪((1 · 2a1pa22 . . . p
at−1

t−1 p
at−1
t , 2a1pa22 . . . p

at−1

t−1 p
at
t )∪

∪(2 · 2a1pa22 . . . p
at−1

t−1 p
at−1
t , 2a1pa22 . . . p

at−1

t−1 p
at
t )∪

∪ . . . ∪ ((pt − 1) · 2a1pa22 . . . p
at−1

t−1 p
at−1
t , 2a1pa22 . . . p

at−1

t−1 p
at
t ))∪

∪((2a1, 4p2) ∪ (2a2, 2p2p3) . . . ∪ (2at−1, 2pt−1pt) ∪ (2at, 4pt)),

где при 1 6 i 6 t− 1 имеем

1 6 ai 6 pipi+1, ai ≡ 0 mod pi, ai ≡ −1 mod pi+1
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и при i = t имеем

1 6 at 6 2pt, at ≡ 0 mod pt, at ≡ −1 mod 2.

Здесь серия

((2, 2p2) ∪ (4, 2p2) ∪ (6, 2p2) ∪ . . . ∪ (2p2 − 4, 2p2))∪

∪((2, 2p3) ∪ (4, 2p3) ∪ (6, 2p3) ∪ . . .∪
∪(2p3 − 4, 2p3)) ∪ . . . ∪ ((2, 2pt) ∪ (4, 2pt) ∪ (6, 2pt) ∪ . . . ∪ (2pt − 4, 2pt))

накрывает все четные числа, не сравнимые с 0 и −2 по модулям p2, . . . , pt.
Серия

((4p2 . . . pt − 2, 8p2 . . . pt) ∪ (8p2 . . . pt − 2, 16p2 . . . pt)∪

∪ . . . ∪ (2a1−1p2 . . . pt − 2, 2a1p2 . . . pt))∪
∪((1 · 2a1p2p3 . . . pt − 2, 2a1p22p3 . . . pt)∪
∪(2 · 2a1p2p3 . . . pt − 2, 2a1p22p3 . . . pt)∪

∪ . . . ∪ ((p2 − 1) · 2a1p2p3 . . . pt − 2, 2a1p22p3 . . . pt))∪
∪((1 · 2a1p22p3 . . . pt − 2, 2p32p3 . . . pt)∪
∪(2 · 2a1p22p3 . . . pt − 2, 2a1p32p3 . . . pt)∪

∪ . . . ∪ ((p2 − 1) · 2a1p22p3 . . . pt − 2, 2a1p32p3 . . . pt))∪
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∪((1 · 2a1pa2−1
2 p3 . . . pt − 2, 2a1pa22 p3 . . . pt)∪

∪(2 · 2a1pa2−1
2 p3 . . . pt − 2, 2a1pa22 p3 . . . pt)∪

∪ . . . ∪ ((p2 − 1) · 2a1pa2−1
2 p3 . . . pt − 2, 2a1pa22 p3 . . . pt))∪

∪((1 · 2a1pa22 p3 . . . pt − 2, 2a1pa22 p
2
3p4 . . . pt)∪

∪(2 · 2a1pa22 p3 . . . pt − 2, 2a1pa22 p
2
3p4 . . . pt)∪

∪ . . . ∪ ((p3 − 1) · 2a1pa22 p3 . . . pt − 2, 2a1pa22 p
2
3p4 . . . pt))∪

∪((1 · 2a1pa22 p23p4 . . . pt − 2, 2a1pa22 p
3
3p4 . . . pt)∪

∪(2 · 2a1pa22 p23p4 . . . pt − 2, 2a1pa22 p
3
3p4 . . . pt)∪

∪ . . . ∪ ((p3 − 1) · 2a1pa22 p23p4 . . . pt − 2, 2a1pa22 p
3
3p4 . . . pt))∪
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∪((1 · 2a1pa22 pa3−1
3 p4 . . . pt − 2, 2a1pa22 p

a3
3 p4 . . . pt)∪

∪(2 · 2a1pa22 pa3−1
3 p4 . . . pt − 2, 2a1pa22 p

3
3a3p4 . . . pt)∪

∪ . . . ∪ ((p3 − 1) · 2a1pa22 pa3−1
3 p4 . . . pt − 2, 2a1pa22 p

a3
3 p4 . . . pt))∪

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∪((1 · 2a1pa22 . . . p
at−1

t−1 pt − 2, 2a1pa22 . . . p
at−1

t−1 p
2
t )∪

∪(2 · 2a1pa22 . . . p
at−1

t−1 pt − 2, 2a1pa22 . . . p
at−1

t−1 p
2
t )∪

∪ . . . ∪ ((pt − 1) · 2a1pa22 . . . p
at−1

t−1 pt − 2, 2a1pa22 . . . p
at−1

t−1 p
2
t ))∪

∪((1 · 2a1pa22 . . . p
at−1

t−1 p
2
t − 2, 2a1pa22 . . . p

at−1

t−1 p
3
t )∪

∪(2 · 2a1pa22 . . . p
at−1

t−1 p
2
t − 2, 2a1pa22 . . . p

at−1

t−1 p
3
t ) ∪ . . .∪

∪((pt − 1) · 2a1pa22 . . . p
at−1

t−1 p
2
t − 2, 2a1pa22 . . . p

at−1

t−1 p
3
t ))∪

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∪((1 · 2a1pa22 . . . p
at−1

t−1 p
at−1
t − 2, 2a1pa22 . . . p

at−1

t−1 p
at
t )∪

∪(2 · 2a1pa22 . . . p
at−1

t−1 p
at−1
t − 2, 2a1pa22 . . . p

at−1

t−1 p
at
t )∪

∪ . . . ∪ ((pt − 1) · 2a1pa22 . . . p
at−1

t−1 p
at−1
t − 2, 2a1pa22 . . . p

at−1

t−1 p
at
t ))

накрывает все четные числа, сравнимые с −2 по модулям 4, p2, . . . , pt, но
не сравнимые с −2 по модулю 2a1pa22 . . . patt . Серия

((4p2 . . . pt, 8p2 . . . pt) ∪ (8p2 . . . pt, 16p2 . . . pt)∪

∪ . . . ∪ (2a1−1p2 . . . pt, 2
a1p2 . . . pt))∪

∪((1 · 2a1p2p3 . . . pt, 2a1p22p3 . . . pt) ∪ (2 · 2a1p2p3 . . . pt, 2a1p22p3 . . . pt)∪
∪ . . . ∪ ((p2 − 1) · 2a1p2p3 . . . pt, 2a1p22p3 . . . pt))∪

∪((1 · 2a1p22p3 . . . pt, 2p32p3 . . . pt) ∪ (2 · 2a1p22p3 . . . pt, 2a1p32p3 . . . pt)∪
∪ . . . ∪ ((p2 − 1) · 2a1p22p3 . . . pt, 2a1p32p3 . . . pt))∪

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∪((1 · 2a1pa2−1
2 p3 . . . pt, 2

a1pa22 p3 . . . pt)∪
∪(2 · 2a1pa2−1

2 p3 . . . pt, 2
a1pa22 p3 . . . pt)∪

∪ . . . ∪ ((p2 − 1) · 2a1pa2−1
2 p3 . . . pt, 2

a1pa22 p3 . . . pt))∪
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∪((1 · 2a1pa22 p3 . . . pt, 2a1pa22 p23p4 . . . pt)∪
∪(2 · 2a1pa22 p3 . . . pt, 2a1pa22 p23p4 . . . pt)∪

∪ . . . ∪ ((p3 − 1) · 2a1pa22 p3 . . . pt, 2a1pa22 p23p4 . . . pt))∪
∪((1 · 2a1pa22 p23p4 . . . pt, 2a1pa22 p33p4 . . . pt)∪
∪(2 · 2a1pa22 p23p4 . . . pt, 2a1pa22 p33p4 . . . pt)∪

∪ . . . ∪ ((p3 − 1) · 2a1pa22 p23p4 . . . pt, 2a1pa22 p33p4 . . . pt))∪
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∪((1 · 2a1pa22 pa3−1
3 p4 . . . pt, 2

a1pa22 p
a3
3 p4 . . . pt)∪

∪(2 · 2a1pa22 pa3−1
3 p4 . . . pt, 2

a1pa22 p
3
3a3p4 . . . pt)∪

∪ . . . ∪ ((p3 − 1) · 2a1pa22 pa3−1
3 p4 . . . pt, 2

a1pa22 p
a3
3 p4 . . . pt))∪

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∪((1 · 2a1pa22 . . . p
at−1

t−1 pt, 2
a1pa22 . . . p

at−1

t−1 p
2
t )∪

∪(2 · 2a1pa22 . . . p
at−1

t−1 pt, 2
a1pa22 . . . p

at−1

t−1 p
2
t )∪

∪ . . . ∪ ((pt − 1) · 2a1pa22 . . . p
at−1

t−1 pt, 2
a1pa22 . . . p

at−1

t−1 p
2
t ))∪

∪((1 · 2a1pa22 . . . p
at−1

t−1 p
2
t , 2

a1pa22 . . . p
at−1

t−1 p
3
t )∪

∪(2 · 2a1pa22 . . . p
at−1

t−1 p
2
t , 2

a1pa22 . . . p
at−1

t−1 p
3
t )∪

∪ . . . ∪ ((pt − 1) · 2a1pa22 . . . p
at−1

t−1 p
2
t , 2

a1pa22 . . . p
at−1

t−1 p
3
t ))∪

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∪((1 · 2a1pa22 . . . p
at−1

t−1 p
at−1
t , 2a1pa22 . . . p

at−1

t−1 p
at
t )∪

∪(2 · 2a1pa22 . . . p
at−1

t−1 p
at−1
t , 2a1pa22 . . . p

at−1

t−1 p
at
t )∪

∪ . . . ∪ ((pt − 1) · 2a1pa22 . . . p
at−1

t−1 p
at−1
t , 2a1pa22 . . . p

at−1

t−1 p
at
t ))

накрывает все четные числа, сравнимые с 0 по модулям 4, p2, . . . , pt, но
не сравнимые с 0 по модулю 2a1pa22 . . . patt . Наконец, серия

(2a1, 4p2) ∪ (2a2, 2p2p3) . . . ∪ (2at−1, 2pt−1pt) ∪ (2at, 4pt)

накрывает все четные числа, сравнимые с 0 или −2 по модулям
4, p2, . . . , pt, но не сравнимые с 0 или −2 по модулю 4p2 . . . pt. Поэтому

L(n) 6 1 +

t∑

i=2

(pi − 2) + 2(a1 − 2) + 2

t∑

i=2

(ai − 1)(pi − 1) + t =
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= (2a2 − 1)(p2 − 1) + . . .+ (2at − 1)(pt − 1) + (2a1 − 2).

Для доказательства нижней оценки введем обозначения

X1 := {pa22 . . . patt },

X2
2 := {22pa22 . . . patt − 2}, . . . , Xa1−1

2 := {2a1−1pa22 . . . patt − 2},
X2

3 := {22pa22 . . . patt }, . . . , Xa1−1
3 := {2a1−1pa22 . . . patt },

X2,1
4 := {1 · 2a1p2pa33 . . . patt − 2, . . . , (p2 − 1) · 2a1p2pa33 . . . patt − 2},

X2,2
4 := {1 · 2a1p22pa33 . . . patt − 2, . . . , (p2 − 1) · 2a1p22pa33 . . . patt − 2},

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

X2,a2−1
4 := {1 · 2a1pa2−1

2 pa33 . . . patt − 2, . . . , (p2 − 1) · 2a1pa2−1
2 pa33 . . . patt − 2},

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Xt,1
3 := {1 · 2a1pa22 . . . p

at−1

t−1 pt − 2, . . . , (pt − 1) · 2a1pa22 . . . p
at−1

t−1 pt − 2},

Xt,2
4 := {1 · 2a1pa22 . . . p

at−1

t−1 p
2
t − 2, . . . , (pt − 1) · 2a1pa22 . . . p

at−1

t−1 p
2
t − 2},

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Xt,at−1
4 := {1 ·2a1pa22 . . . p

at−1

t−1 p
at−1
t −2, . . . , (pt−1) ·2a1pa22 . . . p

at−1

t−1 p
at−1
t −2},

X2,1
5 := {1 · 2a1p2pa33 . . . patt , . . . , (p2 − 1) · 2a1p2pa33 . . . patt },

X2,2
5 := {1 · 2a1p22pa33 . . . patt , . . . , (p2 − 1) · 2a1p22pa33 . . . patt },
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

X2,a2−1
5 := {1 · 2pa2−1

2 pa33 . . . patt , . . . , (p2 − 1) · 2a1pa2−1
2 pa33 . . . patt },

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Xt,1
5 := {1 · 2a1pa22 . . . p

at−1

t−1 pt, . . . , (pt − 1) · 2a1pa22 . . . p
at−1

t−1 pt},

Xt,2
5 := {1 · 2a1pa22 . . . p

at−1

t−1 p
2
t , . . . , (pt − 1) · 2a1pa22 . . . p

at−1

t−1 p
2
t },

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Xt,at−1
5 := {1 · 2a1pa22 . . . p

at−1

t−1 p
at−1
t , . . . , (pt − 1) · 2a1pa22 . . . p

at−1

t−1 p
at−1
t },

X2
6 := {2b2,1, . . . , 2b2,p2−2},
. . . . . . . . . . . . . . . . . . . . . . . .

Xt
6 := {2bt,1, . . . , 2bt,pt−2},
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X7 := {2c1, . . . , 2ct−1, 2ct},
Y := (2pa22 . . . patt − 2, 2pa22 . . . patt ) ∪ (2pa22 . . . patt , 2p

a2
2 . . . patt ),

где
bi,j ≡ j mod paii , bi,j ≡ 0 mod

n

2paii
,

c1 ≡ −1 mod 2a1−1, c1 ≡ 0 mod
n

2a1

и при 2 6 i 6 t верно

ci ≡ −1 mod paii , ci ≡ 0 mod
n

2paii
.

Покажем, что множество

X := X1 ∪X2
2 ∪ . . . ∪Xa1−1

2 ∪X2
3 ∪ . . . ∪Xa1−1

3 ∪X2,1
4 ∪

∪ . . . ∪Xt,at−1
4 ∪X2,1

5 ∪ . . . ∪Xt,at−1
5 ∪X2

6 ∪ . . . ∪Xt
6 ∪X7

будет опорным семейством для множества Y. Пусть x1, x2 ∈ X, x1 < x2.

Нужно доказать, что выполнено хотя бы одно из двух условий:

(x1, x2 − x1) ∩ (n− 2, n) 6= ∅, (9)

(x1, x2 − x1) ∩ (n, n) 6= ∅. (10)

Возможны случаи:
Случай 1.
x1 ∈ X1, x2 ∈ Xi

2 или x2 ∈ X1, x1 ∈ Xi
2. Тогда НОД(x2 − x1, n) = 2 и

значит по лемме 1 верно (9).

Случай 2.
x1 ∈ X1, x2 ∈ Xi

3 или x2 ∈ X1, x1 ∈ Xi
3. Тогда НОД(x2 − x1, n) = n

2a1 и по
лемме 1 верно (10).

Случай 3.
x1 ∈ X1, x2 ∈ Xi,j

4 или x2 ∈ X1, x1 ∈ Xi,j
4 . Тогда НОД(x2− x1, n) = 1 и по

лемме 1 верно (9).

Случай 4.
x1 ∈ X1, x2 ∈ Xi,j

5 или x2 ∈ X1, x1 ∈ Xi,j
5 . Тогда НОД(x2−x1, n) = n

2a1p
ai
i

pji

и по лемме 1 верно (10).

Случай 5.
x1 ∈ X1, x2 ∈ Xi

6 или x2 ∈ X1, x1 ∈ Xi
6. Тогда НОД(x2 − x1, n) = n

p
ai
i

и по
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лемме 1 верно (10).

Случай 6.
x1 ∈ X1, x2 = c1 или x2 ∈ X1, x1 = c1. Случай аналогичен случаю 2.
Случай 7.
x1 ∈ X1, x2 = ci, i > 1 или x2 ∈ X1, x1 = ci, i > 1. Тогда верно, что
НОД(x2 − x1, n) = n

2a1p
ai
i

и значит по лемме 1 получаем (10).

Случай 8.
x1 ∈ Xi

2, x2 ∈ Xj
2 , i < j. Тогда НОД(x2−x1, n) = n

2a1 2
i и по лемме 1 верно

(9).

Случай 9.
x1 ∈ Xi

2, x2 ∈ Xj
2 , i > j. Тогда НОД(x2−x1, n) = n

2a1 2
j и по лемме 1 верно

(9).

Случай 10.
x1 ∈ Xi

2, x2 ∈ Xj
3 . Случай аналогичен случаю 1.

Случай 11.
x1 ∈ Xi

2, x2 ∈ Xj,k
4 или x2 ∈ Xi

2, x1 ∈ Xj,k
4 . Тогда в этом случае верно, что

НОД(x2 − x1, n) = n

2a1p
aj
j

2ipkj и значит по лемме 1 получаем (9).

Случай 12.
x1 ∈ Xi

2, x2 ∈ Xj,k
5 или x2 ∈ Xi

2, x1 ∈ Xj,k
5 . Случай аналогичен случаю 1.

Случай 13.
x1 ∈ Xi

2, x2 ∈ Xj
6 или x2 ∈ Xi

2, x1 ∈ Xj
6 . Случай аналогичен случаю 1.

Случай 14.
x1 ∈ Xi

2, x2 = c1 или x2 ∈ Xi
2, x1 = c1. Тогда НОД(x2 − x1, n) = 2i и по

лемме 1 верно (9).

Случай 15.
x1 ∈ Xi

2, x2 = cj , j > 1 или x2 ∈ Xi
2, x1 = cj , j > 1. Тогда верно, что

НОД(x2 − x1, n) = p
aj
j и значит по лемме 1 получаем (9).

Случай 16.
x1 ∈ Xi

3, x2 ∈ Xj,k
4 или x2 ∈ Xi

3, x1 ∈ Xj,k
4 . Случай аналогичен случаю 1.

Случай 17.
x1 ∈ Xi

3, x2 ∈ Xj,k
5 или x2 ∈ Xi

3, x1 ∈ Xj,k
5 . Тогда в этом случае верно, что

НОД(x2 − x1, n) = n

2a1p
aj
j

2ipkj и значит по лемме 1 получаем (10).

Случай 18.
x1 ∈ Xi

3, x2 ∈ Xj
6 или x3 ∈ Xi

2, x1 ∈ Xj
6 . Тогда НОД(x2 − x1, n) = n

2a1p
aj
j

2i

и по лемме 1 верно (10).

Случай 19.
x1 ∈ Xi

3, x2 = c1 или x2 ∈ Xi
3, x1 = c1. Тогда НОД(x2 − x1, n) = 2 n

2a1 и по
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лемме 1 верно (10).

Случай 20.
x1 ∈ Xi

3, x2 = cj , j > 1 или x2 ∈ Xi
3, x1 = cj , j > 1. Случай аналогичен

случаю 18.
Случай 21.
x1 ∈ Xi,j1

4 , x2 ∈ Xi,j2
4 , j1 6 j2. Тогда НОД(x2 − x1, n) = n

p
ai
i

pj1i и по лемме
1 верно (9).

Случай 22.
x1 ∈ Xi,j1

4 , x2 ∈ Xi,j2
4 , j1 > j2. Тогда НОД(x2 − x1, n) = n

p
ai
i

pj2i и по лемме
1 верно (9).

Случай 23.
x1 ∈ Xi1,j1

4 , x2 ∈ Xi2,j2
4 , i1 6= i2. Тогда НОД(x2 − x1, n) = n

p
ai1
i1

p
ai2
i2

pj1i1p
j2
i2

и

по лемме 1 верно (9).

Случай 24.
x1 ∈ Xi1,j1

4 , x2 ∈ Xi2,j2
5 . Случай аналогичен случаю 1.

Случай 25.
x1 ∈ Xi,j

4 , x2 ∈ Xk
6 или x2 ∈ Xi,j

4 , x1 ∈ Xk
6 . Случай аналогичен случаю 1.

Случай 26.
x1 ∈ Xi,j

4 , x2 = c1 или x2 ∈ Xi,j
4 , x1 = c1. Тогда НОД(x2 − x1, n) = 2a1 и

по лемме 1 верно (9).

Случай 27.
x1 ∈ Xi,j

4 , x2 = ck, k > 1 или x2 ∈ Xi,j
4 , x1 = ci, k > 1. Тогда верно, что

НОД(x2 − x1, n) = 2pji и по лемме 1 получаем (9).

Случай 28.
x1 ∈ Xi,j1

5 , x2 ∈ Xi,j2
5 , j1 6 j2. Тогда НОД(x2 − x1, n) = n

p
ai
i

pj1i и по лемме
1 верно (10).

Случай 29.
x1 ∈ Xi,j1

5 , x2 ∈ Xi,j2
5 , j1 > j2. Тогда НОД(x2 − x1, n) = n

p
ai
i

pj2i и по лемме
1 верно (10).

Случай 30.
x1 ∈ Xi1,j1

5 , x2 ∈ Xi2,j2
5 , i1 6= i2. Тогда НОД(x2 − x1, n) = n

p
ai1
i1

p
ai2
i2

pj1i1p
j2
i2

и

по лемме 1 верно (10).

Случай 31.
x1 ∈ Xi,j

5 , x2 ∈ Xi
6 или x2 ∈ Xi,j

5 , x1 ∈ Xi
6. Случай аналогичен случаю 5.

Случай 32.
x1 ∈ Xi,j

5 , x2 ∈ Xk
6 , i 6= k или x2 ∈ Xi,j

5 , x1 ∈ Xk
6 , i 6= k. Тогда верно, что
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НОД(x2 − x1, n) = n
p
ai
i p

ak
k

pji и по лемме 1 получаем (10).

Случай 33.
x1 ∈ Xi,j

5 , x2 = c1 или x2 ∈ Xi,j
5 , x1 = c1. Тогда НОД(x2−x1, n) = 2 n

2a1p
ai
i

pji

и по лемме 1 верно (10).

Случай 34.
x1 ∈ Xi,j

5 , x2 = ci, или x2 ∈ Xi,j
5 , x1 = ci. Случай аналогичен случаю 5.

Случай 35.
x1 ∈ Xi,j

5 , x2 = ck, k 6= i или x2 ∈ Xi,j
5 , x1 = ck, k 6= i. Тогда верно, что

НОД(x2 − x1, n) = n
p
ak
k p

ai
i

pji и по лемме 1 получаем (10).

Случай 36.
x1 ∈ Xi

6, x2 ∈ Xi
6. Случай аналогичен случаю 5.

Случай 37.
x1 ∈ Xi

6, x2 ∈ Xj
6 , i 6= j. Тогда НОД(x2 − x1, n) = n

p
ai
i p

aj
j

и по лемме 1

верно (10).

Случай 38.
x1 ∈ Xi

6, x2 = ci или x1 ∈ Xi
6, x2 = ci. Случай аналогичен случаю 5.

Случай 39.
x1 ∈ Xi

6, x2 = c1 или x2 ∈ Xi
6, x1 = c1. Тогда НОД(x2 − x1, n) = 2 n

2a1p
ai
i

и
по лемме 1 верно (10).

Случай 40.
x1 ∈ Xi

6, x2 = cj , i 6= j 6= 1 или x2 ∈ Xi
6, x1 = cj , i 6= j 6= 1. Случай

аналогичен случаю 37.
Случай 41.
x1 = c1, x2 = ci, i > 1 или x2 = c1, x1 = ci, i > 1. Случай аналогичен
случаю 39.
Случай 42.
x1 = ci, x2 = cj , i, j 6= 1. Случай аналогичен случаю 37.
Разбор случаев завершен. Мы показали, что множествоX будет опорным
семейством для Y. Но в множестве X всего

|X1|+ |X2
2 |+ . . .+ |Xa1−1

2 |+ |X2
3 |+ . . .+ |Xa1−1

3 |+

+|X2,1
4 |+ . . .+ |Xt,at−1

4 |+ |X2,1
5 |+

+ . . .+ |Xt,at−1
5 |+ |X2

6 |+ . . .+ |Xt
6|+ |X7| =

= 1 + 2(a1 − 2) + 2(p2 − 1)(a2 − 1)+

+ . . .+ 2(pt − 1)(at − 1) + (p2 − 2) + . . .+ (pt − 2) + t =
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= (2a2 − 1)(p2 − 1) + . . .+ (2at − 1)(pt − 1) + (2a1 − 2)

элементов. Поэтому по лемме 2 получаем

L(2a1pa22 . . . patt ) > (2a2 − 1)(p2 − 1) + . . .+ (2at − 1)(pt − 1) + (2a1 − 2).

В случае, когда p1 = 2, t > 2, a1 > 1, утверждение теоремы доказано.
Пусть p1 > 2, t = 1. Докажем тогда, что

L(n) = L(pa11 ) = (2a1 − 1)(p1 − 1)− 1.

Сначала представим T (n) в виде объединения (2a1− 1)(p1− 1)− 1 ариф-
метических прогрессий. Это можно сделать следующим образом:

T (n) = ((1, p1) ∪ (2, p1) ∪ . . . ∪ (p1 − 3, p1) ∪ (p1 − 1, p1))∪

∪((p1 − 2, p21) ∪ (2p1 − 2, p21) ∪ . . . ∪ ((p1 − 1)p1 − 2, p21))∪
∪((p21 − 2, p31) ∪ (2p21 − 2, p31) ∪ . . . ∪ ((p1 − 1)p21 − 2, p31))∪

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∪((pa1−1
1 − 2, pa11 ) ∪ (2pa1−1

1 − 2, pa11 ) ∪ . . . ∪ ((p1 − 1)pa1−1
1 − 2, pa11 ))∪

∪((p1, p21) ∪ (2p1, p
2
1) ∪ . . . ∪ ((p1 − 1)p1, p

2
1))∪

∪((p21, p31) ∪ (2p21, p
3
1) ∪ . . . ∪ ((p1 − 1)p21, p

3
1))∪

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∪((pa1−1
1 , pa11 ) ∪ (2pa1−1

1 , pa11 ) ∪ . . . ∪ ((p1 − 1)pa1−1
1 , pa11 )).

Видно, что здесь (p1−2)+2(a1−1)(p1−1) = (2a1−1)(p1−1)−1 прогрессий.
Множество

(1, p1) ∪ (2, p1) ∪ . . . ∪ (p1 − 3, p1) ∪ (p1 − 1, p1)

покрывает все числа, не сравнимые с 0 или −2 по модулю p1. Множество

((p1 − 2, p21) ∪ (2p1 − 2, p21) ∪ . . . ∪ ((p1 − 1)p1 − 2, p21))∪

∪((p21 − 2, p31) ∪ (2p21 − 2, p31) ∪ . . . ∪ ((p1 − 1)p21 − 2, p31))∪
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∪((pa1−1
1 − 2, pa11 ) ∪ (2pa1−1

1 − 2, pa11 ) ∪ . . . ∪ ((p1 − 1)pa1−1
1 − 2, pa11 ))
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покрывает все числа, сравнимые с −2 по модулю p1, но не сравнимые с
−2 по модулю pa11 . Наконец, множество

∪((p1, p21) ∪ (2p1, p
2
1) ∪ . . . ∪ ((p1 − 1)p1, p

2
1))∪

∪((p21, p31) ∪ (2p21, p
3
1) ∪ . . . ∪ ((p1 − 1)p21, p

3
1))∪

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∪((pa1−1
1 , pa11 ) ∪ (2pa1−1

1 , pa11 ) ∪ . . . ∪ ((p1 − 1)pa1−1
1 , pa11 ))

покрывает все числа, сравнимые с 0 по модулю p1, но не сравнимые с 0

по модулю pa11 . Поэтому

L(pa11 ) 6 (2a1 − 1)(p1 − 1)− 1.

Покажем, что
L(pa11 ) > (2a1 − 1)(p1 − 1)− 1.

Рассмотрим множества

X1 := {1, 2, . . . , p1 − 3, p1 − 1},

X1
2 := {p1 − 2, 2p1 − 2, . . . , (p1 − 1)p1 − 2},

X2
2 := {p21 − 2, 2p21 − 2, . . . , (p1 − 1)p21 − 2},

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Xa1−1
2 := {pa1−1

1 − 2, 2pa1−1
1 − 2, . . . , (p1 − 1)pa1−1

1 − 2},
X1

3 := {p1, 2p1, . . . , (p1 − 1)p1},
X2

3 := {p21, 2p21, . . . , (p1 − 1)p21},
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Xa1−1
3 := {pa1−1

1 , 2pa1−1
1 , . . . , (p1 − 1)pa1−1

1 },
Y := (2a1 − 2, 2a1) ∪ (2a1 , 2a1).

Покажем, что множество

X := X1 ∪X1
2 ∪ . . . ∪Xa1−1

2 ∪X1
3 ∪ . . . ∪Xa1−1

3

будет опорным семейством для множества Y. Пусть x1, x2 ∈ X, x1 < x2.

Нужно доказать, что выполнено хотя бы одно из двух условий:

(x1, x2 − x1) ∩ (n− 2, n) 6= ∅, (11)
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(x1, x2 − x1) ∩ (n, n) 6= ∅. (12)

Возможны случаи:
Случай 1.
x1 ∈ X1, x2 ∈ X1. Тогда НОД(x2 − x1, n) = 1 и по лемме 1 верно (11).

Случай 2.
x1 ∈ X1, x2 ∈ Xi

2 или x2 ∈ X1, x1 ∈ Xi
2. Случай аналогичен случаю 1.

Случай 3.
x1 ∈ X1, x2 ∈ Xi

3 или x2 ∈ X1, x1 ∈ Xi
3. Случай аналогичен случаю 1.

Случай 4.
x1 ∈ Xi

2, x2 ∈ Xi
2. Тогда НОД(x2 − x1, n) = pi1 и по лемме 1 верно (11).

Случай 5.
x1 ∈ Xi

2, x2 ∈ Xj
2 , i < j. Тогда НОД(x2 − x1, n) = pi1 и поэтому по лемме

1 получаем (11).

Случай 6.
x1 ∈ Xi

2, x2 ∈ Xj
2 , i > j. Тогда НОД(x2 − x1, n) = pj1 и поэтому по лемме

1 получаем (11).

Случай 7.
x1 ∈ Xi

2, x2 ∈ Xj
3 . Случай аналогичен случаю 1.

Случай 8.
x1 ∈ Xi

3, x2 ∈ Xi
3. Тогда НОД(x2 − x1, n) = pi1 и по лемме 1 верно (12).

Случай 9.
x1 ∈ Xi

3, x2 ∈ Xj
3 , i < j. Тогда НОД(x2 − x1, n) = pi1 и поэтому по лемме

1 верно (12).

Случай 10.
x1 ∈ Xi

3, x2 ∈ Xj
3 , i > j. Тогда НОД(x2 − x1, n) = pj1 и поэтому по лемме

1 верно (12).

Разбор случаев завершен. Мы показали, что множествоX будет опорным
семейством для Y. Но в множестве X всего

|X1|+ |X1
2 |+ |X2

2 |+ . . .+ |Xa1−1
2 |+ |X1

3 |+ |X2
3 |+ . . .+ |Xa1−1

3 | =

= (p1 − 2) + 2(a1 − 1)(p1 − 1) = (2a1 − 1)(p1 − 1)− 1

элементов. Поэтому по лемме 2 получаем

L(pa11 ) > (2a1 − 1)(p1 − 1)− 1.

В случае, когда p1 > 2, t = 1, утверждение теоремы доказано.
Пусть p1 > 2, t > 1. Докажем тогда, что

L(n) = L(pa11 . . . patt ) = (2a1 − 1)(p1 − 1) + . . .+ (2at − 1)(pt − 1).
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Для доказательства верхней оценки нужно представить T (n) в виде объ-
единения

(2a1 − 1)(p1 − 1) + . . .+ (2at − 1)(pt − 1)

арифметических прогрессий. Это можно сделать следующим образом:

T (n) = ((1, p1) ∪ (2, p1) ∪ . . . ∪ (p1 − 3, p1) ∪ (p1 − 1, p1))∪

((1, p2) ∪ (2, p2) ∪ . . . ∪ (p2 − 3, p2) ∪ (p2 − 1, p2))∪
∪ . . . ∪ ((1, pt) ∪ (2, pt) ∪ . . . ∪ (pt − 3, pt) ∪ (pt − 1, pt))∪

∪((1 · p1p2 . . . pt − 2, p21p2 . . . pt) ∪ (2 · p1p2 . . . pt − 2, p21p2 . . . pt)∪
∪ . . . ∪ ((p1 − 1) · p1p2 . . . pt − 2, p21p2 . . . pt))∪

∪((1 · p21p2 . . . pt − 2, p31p2 . . . pt) ∪ (2 · p21p2 . . . pt − 2, p31p2 . . . pt)∪
∪ . . . ∪ ((p2 − 1) · p21p2 . . . pt − 2, p31p2 . . . pt))∪

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∪((1 · pa1−1
1 p2 . . . pt − 2, pa11 p2 . . . pt)∪

∪(2 · pa1−1
1 p2 . . . pt − 2, pa11 p2 . . . pt)∪

∪ . . . ∪ ((p1 − 1) · pa1−1
1 p2 . . . pt − 2, pa11 p2 . . . pt))∪

∪((1 · pa11 p2 . . . pt − 2, pa11 p
2
2p3 . . . pt)∪

∪(2 · pa11 p2 . . . pt − 2, pa11 p
2
2p3 . . . pt)∪

∪ . . . ∪ ((p2 − 1) · pa11 p2 . . . pt − 2, pa11 p
2
2p3 . . . pt))∪

∪((1 · pa11 p22p3 . . . pt − 2, pa11 p
3
2p3 . . . pt)∪

∪(2 · pa11 p22p3 . . . pt − 2, pa11 p
3
2p3 . . . pt)∪

∪ . . . ∪ ((p2 − 1) · pa11 p22p3 . . . pt − 2, pa11 p
3
2p3 . . . pt))∪

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∪((1 · pa11 pa2−1
2 p3 . . . pt − 2, pa11 p

a2
2 p3 . . . pt)∪

∪(2 · pa11 pa2−1
2 p3 . . . pt − 2, pa11 p

a2
2 p3 . . . pt)∪

∪ . . . ∪ ((p2 − 1) · pa11 pa2−1
2 p3 . . . pt − 2, pa11 p

a2
2 p3 . . . pt))∪

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∪((1 · pa11 . . . p
at−1

t−1 pt − 2, pa11 . . . p
at−1

t−1 p
2
t )∪
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∪(2 · pa11 . . . p
at−1

t−1 pt − 2, pa11 . . . p
at−1

t−1 p
2
t )∪

∪ . . . ∪ ((pt − 1) · pa11 . . . p
at−1

t−1 pt − 2, pa11 . . . p
at−1

t−1 p
2
t ))∪

∪((1 · pa21 . . . p
at−1

t−1 p
2
t − 2, pa11 . . . p

at−1

t−1 p
3
t )∪

∪(2 · pa11 . . . p
at−1

t−1 p
2
t − 2, pa11 . . . p

at−1

t−1 p
3
t )∪

∪ . . . ∪ ((pt − 1) · pa11 . . . p
at−1

t−1 p
2
t − 2, pa11 . . . p

at−1

t−1 p
3
t ))∪

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∪((1 · pa11 . . . p
at−1

t−1 p
at−1
t − 2, pa11 . . . p

at−1

t−1 p
at
t )∪

∪(2 · pa11 . . . p
at−1

t−1 p
at−1
t − 2, pa11 . . . p

at−1

t−1 p
at
t )∪

∪ . . . ∪ ((pt − 1) · pa11 . . . p
at−1

t−1 p
at−1
t − 2, pa11 . . . p

at−1

t−1 p
at
t ))∪

∪((1 · p1p2 . . . pt, p21p2 . . . pt) ∪ (2 · p1p2 . . . pt, p21p2 . . . pt)∪
∪ . . . ∪ ((p1 − 1) · p1p2 . . . pt, p21p2 . . . pt))∪

∪((1 · p21p2 . . . pt, p31p2 . . . pt) ∪ (2 · p21p2 . . . pt, p31p2 . . . pt)∪
∪ . . . ∪ ((p1 − 1) · p21p2 . . . pt, p31p2 . . . pt))∪

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∪((1 · pa1−1
1 p2 . . . pt, p

a1
1 p2 . . . pt) ∪ (2 · pa2−1

1 p2 . . . pt, p
a1
1 p2 . . . pt)∪

∪ . . . ∪ ((p1 − 1) · pa1−1
1 p2 . . . pt, p

a1
1 p2 . . . pt))∪

∪((1 · pa11 p2 . . . pt, pa11 p22p3 . . . pt)∪
∪(2 · pa11 p2 . . . pt, pa11 p22p3 . . . pt)∪

∪ . . . ∪ ((p2 − 1) · pa11 p2 . . . pt, pa11 p22p3 . . . pt))∪
∪((1 · pa11 p22p3 . . . pt, pa11 p32p3 . . . pt)∪
∪(2 · pa11 p22p3 . . . pt, pa11 p32p3 . . . pt)∪

∪ . . . ∪ ((p2 − 1) · pa11 p22p3 . . . pt, pa11 p32p3 . . . pt))∪
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∪((1 · pa11 pa2−1
2 p3 . . . pt, p

a1
1 p

a2
2 p3 . . . pt)∪

∪(2 · pa11 pa2−1
2 p3 . . . pt, p

a1
1 p

a2
2 p3 . . . pt)∪

∪ . . . ∪ ((p2 − 1) · pa11 pa2−1
2 p3 . . . pt, p

a1
1 p

a2
2 p3 . . . pt))∪

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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∪((1 · pa11 . . . p
at−1

t−1 pt, p
a1
1 . . . p

at−1

t−1 p
2
t )∪

∪(2 · pa11 . . . p
at−1

t−1 pt, p
a1
1 . . . p

at−1

t−1 p
2
t )∪

∪ . . . ∪ ((pt − 1) · pa11 . . . p
at−1

t−1 pt, p
a1
1 . . . p

at−1

t−1 p
2
t ))∪

∪((1 · pa11 . . . p
at−1

t−1 p
2
t , p

a1
1 . . . p

at−1

t−1 p
3
t )∪

∪(2 · pa11 . . . p
at−1

t−1 p
2
t , p

a1
1 . . . p

at−1

t−1 p
3
t )∪

∪ . . . ∪ ((pt − 1) · pa11 . . . p
at−1

t−1 p
2
t , p

a1
1 . . . p

at−1

t−1 p
3
t ))∪

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∪((1 · pa11 . . . p
at−1

t−1 p
at−1
t , pa11 . . . p

at−1

t−1 p
at
t )∪

∪(2 · pa11 . . . p
at−1

t−1 p
at−1
t , pa11 . . . p

at−1

t−1 p
at
t )∪

∪ . . . ∪ ((pt − 1) · pa11 . . . p
at−1

t−1 p
at−1
t , pa11 . . . p

at−1

t−1 p
at
t ))∪

∪((2a1, 2p1p2) ∪ (2a2, 2p2p3) . . . ∪ (2at−1, 2pt−1pt) ∪ (2at, 2ptp1)),

где при 1 6 i 6 t− 1 имеем

1 6 ai 6 pipi+1, ai ≡ 0 mod pi, ai ≡ −1 mod pi+1

и при i = t имеем

1 6 at 6 p1pt, at ≡ 0 mod pt, at ≡ −1 mod p1.

Здесь серия

((1, p1) ∪ (2, p1) ∪ . . . ∪ (p1 − 3, p1) ∪ (p1 − 1, p1))∪

((1, p2) ∪ (2, p2) ∪ . . . ∪ (p2 − 3, p2) ∪ (p2 − 1, p2))∪
∪ . . . ∪ ((1, pt) ∪ (2, pt) ∪ . . . ∪ (pt − 3, pt) ∪ (pt − 1, pt))

накрывает все числа, не сравнимые с 0 и −2 по модулям p1, . . . , pt. Серия

((1 · p1p2 . . . pt − 2, p21p2 . . . pt) ∪ (2 · p1p2 . . . pt − 2, p21p2 . . . pt)∪

∪ . . . ∪ ((p1 − 1) · p1p2 . . . pt − 2, p21p2 . . . pt))∪
∪((1 · p21p2 . . . pt − 2, p31p2 . . . pt) ∪ (2 · p21p2 . . . pt − 2, p31p2 . . . pt)∪

∪ . . . ∪ ((p2 − 1) · p21p2 . . . pt − 2, p31p2 . . . pt))∪
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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∪((1 · pa1−1
1 p2 . . . pt − 2, pa11 p2 . . . pt)∪

∪(2 · pa1−1
1 p2 . . . pt − 2, pa11 p2 . . . pt)∪

∪ . . . ∪ ((p1 − 1) · pa1−1
1 p2 . . . pt − 2, pa11 p2 . . . pt))∪

∪((1 · pa11 p2 . . . pt − 2, pa11 p
2
2p3 . . . pt)∪

∪(2 · pa11 p2 . . . pt − 2, pa11 p
2
2p3 . . . pt)∪

∪ . . . ∪ ((p2 − 1) · pa11 p2 . . . pt − 2, pa11 p
2
2p3 . . . pt))∪

∪((1 · pa11 p22p3 . . . pt − 2, pa11 p
3
2p3 . . . pt)∪

∪(2 · pa11 p22p3 . . . pt − 2, pa11 p
3
2p3 . . . pt)∪

∪ . . . ∪ ((p2 − 1) · pa11 p22p3 . . . pt − 2, pa11 p
3
2p3 . . . pt))∪

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∪((1 · pa11 pa2−1
2 p3 . . . pt − 2, pa11 p

a2
2 p3 . . . pt)∪

∪(2 · pa11 pa2−1
2 p3 . . . pt − 2, pa11 p

a2
2 p3 . . . pt)∪

∪ . . . ∪ ((p2 − 1) · pa11 pa2−1
2 p3 . . . pt − 2, pa11 p

a2
2 p3 . . . pt))∪

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∪((1 · pa11 . . . p
at−1

t−1 pt − 2, pa11 . . . p
at−1

t−1 p
2
t )∪

∪(2 · pa11 . . . p
at−1

t−1 pt − 2, pa11 . . . p
at−1

t−1 p
2
t )∪

∪ . . . ∪ ((pt − 1) · pa11 . . . p
at−1

t−1 pt − 2, pa11 . . . p
at−1

t−1 p
2
t ))∪

∪((1 · pa21 . . . p
at−1

t−1 p
2
t − 2, pa11 . . . p

at−1

t−1 p
3
t )∪

∪(2 · pa11 . . . p
at−1

t−1 p
2
t − 2, pa11 . . . p

at−1

t−1 p
3
t )∪

∪ . . . ∪ ((pt − 1) · pa11 . . . p
at−1

t−1 p
2
t − 2, pa11 . . . p

at−1

t−1 p
3
t ))∪

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∪((1 · pa11 . . . p
at−1

t−1 p
at−1
t − 2, pa11 . . . p

at−1

t−1 p
at
t )∪

∪(2 · pa11 . . . p
at−1

t−1 p
at−1
t − 2, pa11 . . . p

at−1

t−1 p
at
t )∪

∪ . . . ∪ ((pt − 1) · pa11 . . . p
at−1

t−1 p
at−1
t − 2, pa11 . . . p

at−1

t−1 p
at
t ))

накрывает все числа, сравнимые с −2 по модулям p1, . . . , pt, но не срав-
нимые с −2 по модулю pa11 . . . patt . Серия

((1 · p1p2 . . . pt, p21p2 . . . pt) ∪ (2 · p1p2 . . . pt, p21p2 . . . pt)∪
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∪ . . . ∪ ((p1 − 1) · p1p2 . . . pt, p21p2 . . . pt))∪
∪((1 · p21p2 . . . pt, p31p2 . . . pt) ∪ (2 · p21p2 . . . pt, p31p2 . . . pt)∪

∪ . . . ∪ ((p1 − 1) · p21p2 . . . pt, p31p2 . . . pt))∪
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∪((1 · pa1−1
1 p2 . . . pt, p

a1
1 p2 . . . pt)∪

∪(2 · pa2−1
1 p2 . . . pt, p

a1
1 p2 . . . pt)∪

∪ . . . ∪ ((p1 − 1) · pa1−1
1 p2 . . . pt, p

a1
1 p2 . . . pt))∪

∪((1 · pa11 p2 . . . pt, pa11 p22p3 . . . pt)∪
∪(2 · pa11 p2 . . . pt, pa11 p22p3 . . . pt)∪

∪ . . . ∪ ((p2 − 1) · pa11 p2 . . . pt, pa11 p22p3 . . . pt))∪
∪((1 · pa11 p22p3 . . . pt, pa11 p32p3 . . . pt)∪
∪(2 · pa11 p22p3 . . . pt, pa11 p32p3 . . . pt)∪

∪ . . . ∪ ((p2 − 1) · pa11 p22p3 . . . pt, pa11 p32p3 . . . pt))∪
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∪((1 · pa11 pa2−1
2 p3 . . . pt, p

a1
1 p

a2
2 p3 . . . pt)∪

∪(2 · pa11 pa2−1
2 p3 . . . pt, p

a1
1 p

a2
2 p3 . . . pt)∪

∪ . . . ∪ ((p2 − 1) · pa11 pa2−1
2 p3 . . . pt, p

a1
1 p

a2
2 p3 . . . pt))∪

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∪((1 · pa11 . . . p
at−1

t−1 pt, p
a1
1 . . . p

at−1

t−1 p
2
t )∪

∪(2 · pa11 . . . p
at−1

t−1 pt, p
a1
1 . . . p

at−1

t−1 p
2
t )∪

∪ . . . ∪ ((pt − 1) · pa11 . . . p
at−1

t−1 pt, p
a1
1 . . . p

at−1

t−1 p
2
t ))∪

∪((1 · pa11 . . . p
at−1

t−1 p
2
t , p

a1
1 . . . p

at−1

t−1 p
3
t )∪

∪(2 · pa11 . . . p
at−1

t−1 p
2
t , p

a1
1 . . . p

at−1

t−1 p
3
t )∪

∪ . . . ∪ ((pt − 1) · pa11 . . . p
at−1

t−1 p
2
t , p

a1
1 . . . p

at−1

t−1 p
3
t ))∪

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∪((1 · pa11 . . . p
at−1

t−1 p
at−1
t , pa11 . . . p

at−1

t−1 p
at
t )∪

∪(2 · pa11 . . . p
at−1

t−1 p
at−1
t , pa11 . . . p

at−1

t−1 p
at
t )∪
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∪ . . . ∪ ((pt − 1) · pa11 . . . p
at−1

t−1 p
at−1
t , pa11 . . . p

at−1

t−1 p
at
t ))

накрывает все числа, сравнимые с 0 по модулям p1, . . . , pt, но не сравни-
мые с 0 по модулю pa11 . . . patt . Наконец, серия

(2a1, 2p1p2) ∪ (2a2, 2p2p3) . . . ∪ (2at−1, 2pt−1pt) ∪ (2at, 2ptp1)

накрывает все числа, сравнимые с 0 или −2 по модулям p1, . . . , pt, но не
сравнимые с 0 или −2 по модулю p1 . . . pt. Поэтому

L(n) 6
t∑

i=1

(pi − 2) + 2
t∑

i=1

(ai − 1)(pi − 1) + t =

= (2a1 − 1)(p1 − 1) + . . .+ (2at − 1)(pt − 1).

Для доказательства нижней оценки введем обозначения

X1,1
1 := {1 · p1pa22 . . . patt − 2, . . . , (p1 − 1) · p1pa22 . . . patt − 2},

X1,2
1 := {1 · p21pa22 . . . patt − 2, . . . , (p1 − 1) · p21pa22 . . . patt − 2},

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

X1,a1−1
1 := {1 · pa1−1

1 pa22 . . . patt − 2, . . . , (p1 − 1) · pa1−1
1 pa22 . . . patt − 2},

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Xt,1
1 := {1 · pa11 . . . p

at−1

t−1 pt − 2, . . . , (pt − 1) · pa11 . . . p
at−1

t−1 pt − 2},

Xt,2
1 := {1 · pa11 . . . p

at−1

t−1 p
2
t − 2, . . . , (pt − 1) · pa11 . . . p

at−1

t−1 p
2
t − 2},

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Xt,at−1
1 := {1 · pa11 . . . p

at−1

t−1 p
at−1
t − 2, . . . , (pt − 1) · pa11 . . . p

at−1

t−1 p
at−1
t − 2},

X1,1
2 := {1 · p1pa22 . . . patt , . . . , (p1 − 1) · p1pa22 . . . patt },

X1,2
2 := {1 · p21pa22 . . . patt , . . . , (p1 − 1) · p21pa22 . . . patt },
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

X1,a1−1
2 := {1 · pa1−1

1 pa22 . . . patt , . . . , (p1 − 1) · pa1−1
1 pa22 . . . patt },

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Xt,1
2 := {1 · pa11 . . . p

at−1

t−1 pt, . . . , (pt − 1) · pa11 . . . p
at−1

t−1 pt},

Xt,2
2 := {1 · pa11 . . . p

at−1

t−1 p
2
t , . . . , (pt − 1) · pa11 . . . p

at−1

t−1 p
2
t },



234 П. C. Дергач, Е.Д. Данилевская

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Xt,at−1
2 := {1 · pa11 . . . p

at−1

t−1 p
at−1
t , . . . , (pt − 1) · pa11 . . . p

at−1

t−1 p
at−1
t },

X1
3 := {b1,1, . . . , b1,p1−2},

. . . . . . . . . . . . . . . . . . . . . . . .

Xt
3 := {bt,1, . . . , bt,pt−2},
X4 := {c1, . . . , ct},

Y := (pa11 . . . patt − 2, pa11 . . . patt ) ∪ (pa11 . . . patt , p
a1
1 . . . patt ),

где
bi,j ≡ j mod paii , bi,j ≡ 0 mod

n

paii
,

ci ≡ −1 mod paii , ci ≡ 0 mod
n

paii
.

Покажем, что множество

X := X1,1
1 ∪ . . . ∪Xt,at−1

1 ∪X1,1
2 ∪ . . . ∪Xt,at−1

2 ∪X1
3 ∪ . . . ∪Xt

3 ∪X4

будет опорным семейством для множества Y. Пусть x1, x2 ∈ X, x1 < x2.

Нужно доказать, что выполнено хотя бы одно из двух условий:

(x1, x2 − x1) ∩ (n− 2, n) 6= ∅, (13)

(x1, x2 − x1) ∩ (n, n) 6= ∅. (14)

Возможны случаи:
Случай 1.
x1 ∈ Xi,j1

1 , x2 ∈ Xi,j2
1 , j1 6 j2. Тогда НОД(x2 − x1, n) = n

p
ai
i

pj1i и по лемме
1 верно (13).

Случай 2.
x1 ∈ Xi,j1

1 , x2 ∈ Xi,j2
1 , j1 > j2. Тогда НОД(x2 − x1, n) = n

p
ai
i

pj2i и по лемме
1 верно (13).

Случай 3.
x1 ∈ Xi1,j1

1 , x2 ∈ Xi2,j2
1 , i1 6= i2. Тогда НОД(x2 − x1, n) = n

p
ai1
i1

p
ai2
i2

pj1i1p
j2
i2

и

по лемме 1 верно (13).

Случай 4.
x1 ∈ Xi1,j1

1 , x2 ∈ Xi2,j2
2 . Тогда НОД(x2−x1, n) = 1 и по лемме 1 получаем,

что верно (13).
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Случай 5.
x1 ∈ Xi,j

1 , x2 ∈ Xk
3 или x2 ∈ Xi,j

1 , x1 ∈ Xk
3 . Случай аналогичен случаю 4.

Случай 6.
x1 ∈ Xi,j

1 , x2 = ci или x2 ∈ Xi,j
1 , x1 = ci. Тогда НОД(x2 − x1, n) = pji и по

лемме 1 верно (13).

Случай 7.
x1 ∈ Xi,j

1 , x2 = ck, k 6= i или x2 ∈ Xi,j
1 , x1 = ck, k 6= i. Тогда верно, что

НОД(x2 − x1, n) = paii и по лемме 1 получаем (13).

Случай 8.
x1 ∈ Xi,j1

2 , x2 ∈ Xi,j2
2 , j1 6 j2. Тогда НОД(x2 − x1, n) = n

p
ai
i

pj1i и по лемме
1 верно (14).

Случай 9.
x1 ∈ Xi,j1

2 , x2 ∈ Xi,j2
2 , j1 > j2. Тогда НОД(x2 − x1, n) = n

p
ai
i

pj2i и по лемме
1 верно (14).

Случай 10.
x1 ∈ Xi1,j1

2 , x2 ∈ Xi2,j2
2 , i1 6= i2. Тогда НОД(x2 − x1, n) = n

p
ai1
i1

p
ai2
i2

pj1i1p
j2
i2

и

по лемме 1 верно (14).

Случай 11.
x1 ∈ Xi,j

2 , x2 ∈ Xi
3 или x2 ∈ Xi,j

1 , x1 ∈ Xi
3. Тогда НОД(x2 − x1, n) = n

p
ai
i

и
по лемме 1 верно (14).

Случай 12.
x1 ∈ Xi,j

2 , x2 ∈ Xk
3 , i 6= k или x2 ∈ Xi,j

2 , x1 ∈ Xk
3 , i 6= k. Тогда верно, что

НОД(x2 − x1, n) = n
p
ai
i p

ak
k

pji и по лемме 1 получаем (14).

Случай 13.
x1 ∈ Xi,j

2 , x2 = ci или x2 ∈ Xi,j
2 , x1 = ci. Случай аналогичен случаю 11.

Случай 14.
x1 ∈ Xi,j

2 , x2 = ck, k 6= i или x2 ∈ Xi,j
2 , x1 = ck, k 6= i. Случай аналогичен

случаю 12.
Случай 15.
x1 ∈ Xi

3, x2 ∈ Xi
3. Случай аналогичен случаю 11.

Случай 16.
x1 ∈ Xi

3, x2 ∈ Xj
3 , i 6= j. Тогда НОД(x2 − x1, n) = n

p
ai
i p

aj
j

и по лемме 1

верно (14).

Случай 17.
x1 ∈ Xi

3, x2 = ci или x1 ∈ Xi
3, x2 = ci. Случай аналогичен случаю 11.

Случай 18.
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x1 ∈ Xi
3, x2 = cj , i 6= j или x2 ∈ Xi

3, x1 = cj , i 6= j. Случай аналогичен
случаю 16.
Случай 19.
x1 = ci, x2 = cj . Случай аналогичен случаю 16.
Разбор случаев завершен. Мы показали, что множествоX будет опорным
семейством для Y. Но в множестве X всего

|X1,1
1 |+ . . .+ |Xt,at−1

1 |+ |X1,1
2 |+ . . .+ |Xt,at−1

2 |+ |X1
3 |+ . . .+ |Xt

3|+ |X4| =

= 2(p1 − 1)(a1 − 1) + . . .+ 2(pt − 1)(at − 1) + (p1 − 2) + . . .+ (pt − 2) + t =

= (2a1 − 1)(p1 − 1) + . . .+ (2at − 1)(pt − 1)

элементов. Поэтому по лемме 2 получаем

L(pa11 . . . patt ) > (2a1 − 1)(p1 − 1) + . . .+ (2at − 1)(pt − 1).

В случае, когда p1 > 2, t > 1, утверждение теоремы доказано. �
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