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В данной работе решена задача построения сверточной
нейронной сети, способной распознавать рукописные симво-
лы на сильно зашумленных изображениях с точностью, со-
поставимой с человеческой. При этом обучение классифика-
тора происходит по размеченной базе сильно зашумленных
изображений, в которой 5% обучающих примеров размечено
неправильно.
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Введение.

Стандартная искусственная нейронная сеть прямого распростране-
ния — это система, состоящая из нескольких слоев взаимосвязанных
искусственных нейронов. Каждый нейрон принимает вектор выходных
сигналов всех нейронов предшествующего слоя и скалярно умножает его
на собственный вектор весов. К полученному числу в нейроне применя-
ется функция активации, после чего результат поступает на входы ко
всем нейронам следующего слоя. Таким образом, входной слой сети об-
наруживает набор примитивных шаблонов поступающих данных, второй
слой обнаруживает закономерности шаблонов и т.д.

Сверточная нейронная сеть — это особый вид искусственных ней-
ронных сетей. Она состоит из одного или нескольких сверточных сло-
ев (иногда со слоями подвыборки), за которыми следуют полносвязные
слои как в обычной нейронной сети. Архитектура сверточных нейрон-
ных сетей мотивирована открытием механизма работы визуальной коры
головного мозга. В коре содержится много клеток-рецепторов, которые
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отвечают за детектирование света в маленьких перекрывающихся обла-
стях визуального поля, а более сложные клетки обрабатывают сигналы,
поступающие с этих рецепторов.

Сверточные нейронные сети показывают отличные результаты при
обработке данных с пространственной структурой по нескольким при-
чинам:

• устойчивость к сдвигам и поворотам объекта на изображении, а так
же устойчивость к шумам;

• учет пространственной структуры входных признаков;

• меньшее количество оптимизируемых параметров относительно
классических полносвязных сетей;

• более быстрое и качественное обучение относительно обучения пол-
носвязных сетей.

Наиболее известной классической сверточной нейронной сетью явля-
ется LeNet-5 французского информатика Яна ЛеКуна [7]. Данная сеть
обучалась и тестировалась по базе качественных рукописных изображе-
ний MNIST [8]. На тестовой выборке сеть верно классифицировала более
99% символов, что сравнимо с человеческой точностью.

Слои сверточной нейронной сети.

Сверточный слой. Входом слоя являются D матриц размера N ×M .
Сверточный слой может быть как входным слоем сети, так и скрытым
слоем. В случае, если сверточный слой является входным, то N ×M —
размер изображения, а D — количество цветовых каналов изображения.
Входные импульсы сворачиваются T ядрами размера k× k×D каждое.
Свертка слоя одним ядром производит один выходной признак. Начи-
ная с левого верхнего угла, ядро перемещается по изображению, пока
не дойдет до правой границы. Тогда начальное положение ядра смеща-
ется вниз, и ядро снова начинает движение вправо. Таким образом, на
выходе слоя образуются T матриц размера (N − k + 1) × (M − k + 1),
где значение на месте с координатой (i, j) матрицы под номером k — это
результат свертки k-го ядра с входным изображением в ситуации, когда
левый верхний угол ядра имеет координаты (i, j). Полученные значения
могут быть поданы на вход следующего сверточного слоя.
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Слой подвыборки. На слое подвыборки каждый канал входа разби-
вается на непересекающиеся квадраты размера r на r. Из всех значений
каждого квадрата на следующий слой подается только максимальное
значение. Таким образом, если вход слоя подвыборки состоит из D мат-
риц N×M , то на выходе будет D матриц размера (N/r)×(M/r). Данный
слой делает сеть более устойчивой к шуму и уменьшает количество весо-
вых коэффициентов для оптимизации. Использование слоя подвыборки
мотивировано тем, что для сети важно само наличие признака, а не его
точное положение.

Нелинейный слой активации. На данных слоях внутри сети ко всем
значениям входа применяется нелинейная функция активации, и резуль-
тат подается на выход. Таким образом, слой активации не меняет раз-
мер входа. Наиболее популярной нелинейной функцией активации яв-
ляется ReLU функция: ReLU(x) = max (0, x). В качестве функции ак-
тивации в работе использовалась модернизированная ReLU функция:
PReLU(x) = max (a, x), где параметр a автоматически подбирается при
обучении модели. Данный подход позволяет улучшить результаты сети
за счет подбора оптимальной функции активации для каждого нейрона
[3].

Выходной слой построенной сети состоит из 67 нейронов, по количе-
ству возможных классов. На этом слое применяется функция активации
Softmax. Данная функция преобразовывает выход j-го нейрона равный
zj по формуле σj(z) = ezj

67∑
k=1

ezk
. Таким образом, на выходе сети получаются

оценки вероятности того, что был подан соответствующий класс.

Полносвязный слой. В полносвязном слое на вход каждому нейро-
ну подаются все выходы предшествующего слоя. Соответствующие веса
для входов в каждом нейроне, величина сдвига и параметр a в функции
активации PReLU подбираются автоматически при обучении сети.

Дропаут слой. Дропаут слой задается параметром p, который равен
вероятности, с которой каждый вход не будет передан на выход в те-
чение одной итерации обучения сети. Таким образом, при обучении на
каждой итерации часть нейронов выключается из процесса, и веса ме-
няются только у оставшихся нейронов. При распознавании с помощью
сети в работе участвуют уже все нейроны. Так как выход слоя при обу-
чении имел меньший размер, то при распознавании все значения входа
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Рис. 1: Архитектура сети.

дропаут слоя умножаются на число (1 − p) и переходят на выход. Дан-
ный слой уменьшает время одной эпохи обучения в связи с меньшим
число оптимизируемых параметров, а также позволяет лучше бороться
с переобучением сети относительно стандартных методов регуляризации
[10].

Нормализующий слой. На данном слое от всех входов отнимается
выборочное среднее значений на входах, и результат делится на корень
выборочной дисперсии. Выборочные величины вычисляются с учетом
значений на входах данного слоя на предыдущих итерациях обучения.
Данный подход позволяет увеличить скорость обучения сети и улучшить
итоговый результат [4].

Архитектура сети.

Архитектура построенной сети представлена на рис. 1.
Исходное монохромное изображение имеет размеры 48 на 44. Первым

слоем идет свертка изображения 20 ядрами размера 7×7×1 и применение
функции PReLU к получившимся значениям. Получаем 20 изображений
42 на 38.

Далее слой подвыборки разбивает каждое из 20 изображений на непе-
ресекающиеся квадраты 2 на 2 и оставляет только максимальное значе-
ние из каждого квадрата. Таким образом, на выходе первого слоя под-
выборки получаются 20 изображений 21 на 19.

Затем идет свертка полученных изображений 50 ядрами размера
6 × 6 × 20 и применение к полученным значениям функции PReLU. На
выходе получается 50 изображений 16 на 14.



242 С. А. Комков

Второй слой подвыборки аналогично первому возвращает 50 изобра-
жений 8 на 7.

После, значения подаются на дропаут слой с параметром p = 0.7.
После дропаут слоя идет полносвязный слой из 330 нейронов с функцией
активацией PReLU.

Все выходы первого полносвязного слоя подаются на нормализующий
слой, а после него на дропаут слой с параметром p = 0.7. В конце идет
полносвязный слой с 67 нейронами, по количеству возможных классов,
каждый из которых распознает определенный класс. К выходам послед-
него полносвязного слоя применяется функция активации Softmax. Ито-
говым классом для изображения предсказывается тот класс, у которого
оценка вероятности наибольшая.

База изображений.

Имеется размеченная база сильно зашумленных монохромных изоб-
ражений рукописных символов [5] со следующими свойствами:

• размер изображений — 48 на 44 пикселей;

• символы на изображениях принадлежат одному из 67 классов:
33 класса, соответствующие символам кириллицы (прописные и
строчные буквы определяются в один класс), 30 классов, соответ-
ствующие числам с 1 по 30, 4 класса, соответствующие запятым,
точкам, пробелам и символам процента;

• тренировочная подвыборка состоит из 3600 изображений;

• тестирование построенной модели проводится по 900 изображени-
ям, не участвовавшим в обучении;

• изображения различных классов равномерно распределены по тре-
нировочной и тестовой подвыборкам;

• 5% изображений тренировочной подвыборки размечены неправиль-
но;

• на изображениях присутствуют артефакты в виде границ ячеек,
клякс или утерянной части изображения, часть символов выходит
за пределы изображения;
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Рис. 2: Изображения тренировочной подвыборки и их классы.

Рис. 3: Изображения тестовой подвыборки.

• примеры изображений из тренировочной и тестовой подвыборок
представлены на рис. 2 и рис. 3.

Таким образом, исследуется способность сверточных нейронных се-
тей обобщать образы классов при обучении по выборке низкого качества
с выбросами.

Обучение нейронной сети.

Современные методы обучения нейронных сетей базируются на клас-
сическом методе обратного распространения ошибки (параграф 4.3 из
[1]). Основная идея этого метода состоит в распространении сигналов
ошибки от выходов сети к её входам, в направлении, обратном прямому
распространению сигналов в обычном режиме работы. Для этого вво-
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дится функция потерь, зависящая, в частности, от всех весов нейронной
сети. Таким образом, на каждом слое вычисляется градиент функции
потерь, и веса данного слоя меняются в направлении противоположным
градиенту.

Для мультиклассовой классификации при обучении сети в качестве
функции потерь в методе обратного распространения ошибки использу-
ется категориальная кросс-энтропия. В работе веса представленной ней-
ронной сети при обучении меняются каждый раз после обработки 30
изображений. В качестве метода обучения в работе используется адап-
тивный метод Nadam [2], полученный добавлением ускоренного гради-
ента Нестерова [9] в адаптивный метод обучения Adam [6].

Ускоренный градиент Нестерова вычисляет по следующей формуле:

gt := γgt−1 + α5θ f(θ − γgt−1),

где gt — градиент Нестерова в момент времени t, θ — вектор весов ней-
ронной сети, α — скорость обучения, γ — импульс обучения, а f(·) —
функция потерь. Данный прием придает импульс процессу обучения ней-
ронной сети, что позволяет меньше застревать в точках локального ми-
нимума.

Идея адаптивных методов заключается в понижении скорости обу-
чения только тех весов нейронной сети, которые обучаются интенсив-
нее всего. Для этого для каждого параметра нейронной сети вычисляет
некоторое число, характеризующее интенсивность обучения этого пара-
метра. Преимущество метода Adam перед другими адаптивными метода-
ми заключается в универсальной начальной инициализации параметров
этого метода, которая показывает отличные результаты на нейронных
сетях различных архитектур. Прочие методы обучения требуют боль-
шего количества экспериментов и более чувствительны к изменениям
архитектуры сети. Изменение весов методом Adam при рекомендуемой
инициализации задается следующими формулами:

gt := 5θf(θt−1),

mt := 0.9mt−1 + 0.1gt,

vit := 0.999vit−1 + 0.001git
2
,

m̂t := mt/(1− 0.9t),

v̂t := vt/(1− 0.999t),
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θit := θit−1 − αm̂t
i/(

√
v̂t
i + 10−8),

где f(·) — функция потерь, θt — вектор весов нейронной сети в момент
времени t, gt — градиент функции потерь в момент времени t, mt —
импульс движения в момент времени t, vt — вектор интенсивности обу-
чения весов нейронной сети в момент времени t, а α— скорость обучения.
Таким образом, для весов нейронной сети, для которых на предшествую-
щих итерациях соответствующее значение градиента было велико, будет
уменьшаться скорость обучения.

Результаты и выводы.

Результаты тестирования построенной нейронной сети представлены
в табл. 1. Так же по описанной базе изображений была обучена и про-
тестирована сверточная нейронная сеть LeNet-5, о которой говорилось
в введении, и LeNet-5 с функцией активации ReLU вместо сигмоиды.
Дополнительно, тестовая подвыборка была полностью размечена чело-
веком.

Классификатор Процент совпадений
LeNet-5 61.667

LeNet-5 + ReLU activation 67.556
Представленная сверточная нейронная сеть 80.556

Человек 84.889

Таблица 1: Результаты тестирования классификаторов.

Таким образом, построенная сверточная нейронная сеть показывает
значительно лучшие результаты по сравнению с каноничной архитекту-
рой сверточных нейронных сетей. При этом результаты классификации
сравнимы с человеческой классификацией символов на изображениях.
Видно, что предложенные методы по улучшению качества нейросетево-
го распознавания вносят ощутимый вклад в способность нейронной сети
предсказывать верные значения.
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