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In this work, five popular manifold learning techniques, PCA,
ISOMAP, Locally Linear Embedding, Laplacian Eigenmaps and t-
SNE, are examined on improving prediction accuracy of stock price
trend. Effect of examined manifold learning techniques on classification
and clustering task is proved to be different. Examined techniques
tend to often worsen performance in clustering task. In classification
task, observed improvement by all methods is slight, usually less
than 1 percent. And only Laplacian Eigenmaps can more often stably
improve classification accuracy at all number of components while
other methods can’t. Experiment results also suggest that there
is no general effective technique for different stock price data set.
Keywords: dimension reduction, manifold learning, stock price trend,
classification, clustering, neural network, k-means

1. Introduction

Real-world data usually has high dimensionality. In order to handle such real-
world data adequately, its dimensionality needs to be reduced [3]. Manifold
learning techniques are used to project original higher dimensional data to
lower dimensional manifold by keeping structure of original dataset. It’s also
reasonable to represent financial market data as high-dimensional data. So,
reducing high dimensionality of financial market data can be important for
improving prediction accuracy.

State of the art manifold learning techniques include PCA (Principal
Component Analysis), Locally Linear Embedding, multidimensional scaling
(MDS) [11], diffusion maps, ISOMAP, Laplacian Eigenmaps, Maximum
Variance Unfolding, t-SNE and autoencoder. Principal Component Analysis
([8, 7]) is aimed to project original high dimensional data to lower dimensional
manifold based on main directions of datapoints. ISOMAP [10] determines
neighborhood information on the manifold to obtain a weighted graph for
data points based on certain distance measurement. Graph is then updated
by calculating geodesic distances among data points. Lower-dimensional
embedding is determined by solving optimization problem. Disadvantage
of ISOMAP and MDS is higher computation requirement. Locally Linear
Embedding [12] generally consists of three steps. First step is selecting
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neighbors, from which reconstruction occurs and weights are computed by
solving optimization problem in second step. In final step, lower dimensional
embedding is determined by minimizing error of reconstructing from weights.
Laplacian Eigenmaps [13] also generally consists of three steps. In first
step, adjacency matrix is constructed for determining whether data points
are connected. In second step, weights among connected data points are
calculated (other weights are set zero). In third step, Laplacian matrix is
calculated and solving related eigenvector problem is needed for determining
low dimensional manifold. Spectral clustering ([14, 15]) incorporating k-
means usually uses Laplacian Eigenmaps as dimension reduction method.
How Laplacian matrix needs to be derived from data set remains a question
because structure of data set can be various. Diffusion maps was firstly
proposed in [17]. And diffusion semigroups are used to generate multiscale
geometries in order to organize and represent complex structures. Later, in
([18, 19]), the proposed diffusion map is integrated into one framework with
the eigenmaps and random walk. Stiefel manifold from Grassmannian is used
to project data to lower-dimensional space in the work of proposing visClust
[16], which is a newly proposed clustering algorithm. Effectiveness of this
novel clustering algorithm tends to decrease with rising of dimension while
good result can be achieved on low dimensional data. Stochastic Neighbor
Embedding (SNE) was initially proposed in [27]. SNE uses conditional
probabilities to represent similarities. Final low dimensional embedding is a
result of updating initialized low dimensional embedding by using gradient of
sum of Kullback-Leibler divergences. For solving certain problems including
difficulty of optimization in original SNE, t-SNE [26] is proposed with simpler
gradient and computing the similarity by student-t distribution rather than a
Gaussian distribution. Autoencoder ([20, 28]) is a multilayer neural network
with a small central layer for reconstructing high-dimensional input vectors.
Thus, by training the neural network, it’s assumed that high-dimensional
data can be effectively converted to low-dimensional representation. The
idea of maximizing the trace of the inner product matrix has the effect
of maximizing the variance of the low dimensional representation [23]
was originally proposed as “semidefinite embedding” in ([25, 22]). Later
“semidefinite embedding” is described as “maximum variance unfolding” [24].

There are works for comparing different manifold learning techniques.
In the work [3], a comprehensive experiment for comparing twelve manifold
learning techniques is conducted. In experiment manifold learning techniques
are tested on five artificial datasets and five natural datasets. Main conclusion
is that nonlinear techniques for dimensionality reduction are often not
capable of outperforming traditional linear techniques such as PCA. In
another work [5], PCA is examined on clustering gene expression data.



Experiment shows that clustering with the PCs does not necessarily improve,
and often degrades, clustering quality.

So far, few works have focused on investigating effectiveness of manifold
learning techniques on financial market data, especially stock price data.
In [1], experiment is carried out on examining PCA, kernel PCA (KPCA)
[31] and FRPCA [4]. Main reached conclusion is that three PCAs do not
give significantly different results in average and standard PCA performs
slightly better than FRPCA, and FRPCA performs slightly better than
KPCA in average based on the P-values. One advantage of the work is
the idea for construction of feature space. Limitation of the work is that
only methods relating with PCA are examined. And in experiment there is
no comparison for result obtained without dimension reduction. In work of
[2], principal component analysis (PCA), autoencoder, deep belief network
[28] are examined on stock selection. Authors argue that except for fitting
nonlinear relations, autoencoder, deep belief network show no superiority
to principal component analysis on Sharpe ratio and the advantage of
dimensionality reduction is mainly reflected in trend situations (trend of
moving up or down). Limitation of the work is related with the fact that risk
free rate is not considered and only limited methods are examined.

It’s very difficult to make any sufficient conclusion based on conducted
researches on financial market data. Effect of manifold learning techniques
on reducing dimensionality of financial market data is very unclear.

In this work, five popular manifold learning techniques, PCA, ISOMAP,
Locally Linear Embedding, Laplacian Eigenmaps and t-SNE are compared
for stock price trend clustering and classification task. The idea in [1] for
construction of feature space is also used in this work. Manifold learning
techniques are tested on datasets consisting of stock prices of five companies
and high dimensional feature spaces including important macroeconomic
indicators (for example, non-farm payroll, CPI, M1, M2, etc.) and other
important indicators. Original datasets (without dimension reduction) and
projected datasets are set as input for fully connected neural network and
k-means to reveal effect of five popular manifold learning techniques.

The paper is organized into four sections. Section 1 is introduction
part of total work. Section 2 reviews mathematical formulation of five
manifold learning techniques. Section 3 presents experiment for comparison
and discussion of experiment result. Section 4 is conclusion.



2. Manifold learning techniques

2.1. PCA

Goal of Principal Component Analysis [9] is to extract the important
information from the original high dimensional data set and to express this
information based on main directions of datapoints. It is likely to be the
oldest manifold learning technique.

High dimensional data set with N datapoints is denoted as X , with
X =

[
x1 · · · xN

]
∈ RD×N .Vector µX is the central point of all data

points:

µX=
1

N

N∑
i=1

xi, µX ∈ RD×1 (1)

Matrix M from µX , with M =
[
µX · · · µX

]
∈ RD×N , is built. Original

high dimensional data X needs to be centered firstly:

Xc=X−M (2)

Based on centered data Xc, main directions need to be found through
Singular Value Decomposition (SVD):

Xc = USV T (3)

Low dimensional representation D is obtained through:

D = UTXc (4)

2.2. ISOMAP

Original high dimensional data set X, with X =
[
x1 · · · xN

]
∈

RD×N . Dimension of low dimensional manifold is denoted as d . Initially
neighborhood relations of data points are represented as a weighted graph
G, with distances dX (i , j ) between pairs of points i , j in the input space X.

G = (dG (i, j)) = (∥xi − xj∥) (5)

By sorting every column of G, if distance between pairs of points i , j is
smaller than certain threshold, then two points are considered as neighbors.
On the contrary, two points are not considered as neighbors. Next step for
updating weight is conducted based on:

dG(i , j )=

{
dX (i , j ), if ∥xi − xj∥ < ϵ

∞, if ∥xi − xj∥ ≥ ϵ
(6)



For k ∈ {1, 2, . . . , N}, geodesic distances are calculated as followings:

dcG (i, j) = min {dG (i, j) , dG (i, k) + dG (k, j)} (7)

For finding the shortest path between every two nodes, Floyd’s algorithm
can be used ([29, 30]). Apply MDS to DG = {dG(i, j)} , Y = {yi},yi ∈ Rd

and minimize the cost function by setting the coordinates yi to the top d
eigenvectors of the matrix τ (DG).

E = ∥τ (DG)− τ (DY ) ∥L2 (8)

where: τ (DG) = −HSH
2

S = (sij) =
(
dcG (i, j)2

)
H = (hij) , hij = δij − 1

N
p-th eigenvalue: λp.
p-th eigenvector: vp.
p-th component of coordinate of yp, with yp = vp

√
λp. Low dimensional

manifold is then: Y =
[
y1 · · · yd

]T .

2.3. Locally Linear Embedding

High dimensional input data, N samples with dimensionality D is denoted

as X, with X =

x1

· · ·
xN

 ∈ RN×D.

For first step in Locally Linear Embedding, the set of neighbors for
each data point can be determined by: choosing the K nearest neighbors
by Euclidean distance, or choosing points within a fixed radius, or using
prior knowledge [12].

For second step in Locally Linear Embedding, thus reconstruction with
weights, matrix of weights W is calculated by minimizing reconstruction
error:

ε (W ) =
∑
i

∣∣∣∣∣∣xi −
∑
j

Wijxj

∣∣∣∣∣∣
2

(9)

Each data point is reconstructed from its neighbors and sum of each row of
the weight matrix is one: ∑

j

Wij = 1 (10)

In the final step of Locally Linear Embedding, low dimensional manifold Y
is determined by minimizing the embedding cost function:

Φ (Y ) =
∑
i

∣∣∣∣∣∣yi −
∑
j

Wijyj

∣∣∣∣∣∣
2

(11)



2.4. Laplacian Eigenmaps

Data in high dimensional space is denoted as X, with X =
[
x1 · · · xk

]
∈

Rl×k.After constructing adjacency graph, a weight matrix is needed and
denoted as W k×k, with W k×k = (Wij).Weight between two points can be
calculated either by a heat kernel or simple rule. By heat kernel, weight is
calculated as:

Wij =

e−
∥xi−xj∥

2

t , if ∥xi − xj∥2 < ϵ

0 , if ∥xi − xj∥2 ≥ ϵ
(12)

By simple rule, weight is calculated as:

Wij =

{
1 , if ∥xi − xj∥2 < ϵ

0 , if ∥xi − xj∥2 ≥ ϵ
(13)

Diagonal weight matrix is denoted as Dk×k and:

Dii =
∑
j

Wji (14)

Laplacian matrix is obtained by following way:

Lk×k = Dk×k −W k×k (15)

Eigenvectors v0, . . . ,vk−1 (corresponding eigenvalues λ0 ≤ λ1 ≤ . . . ≤ λk−1

) are solutions of equation 15, ordered according to their eigenvalues:

Lv = λDv (16)

Where v ∈ Rk×1. By removing v0 corresponding to λ0 = 0, next m
eigenvectors are used for embedding. Then dimensionality of k datapoints
is reduced to m and Fk×m = (fλ),λ ∈ {1, 2, . . . ,m}.

2.5. t-SNE

As mentioned above, t-SNE is proposed based on SNE. For solving certain
problems, such as difficulty of optimization in original SNE, t-SNE is
proposed with computing the similarity by student-t distribution bot not
Gaussian distribution. And a simpler gradient is used for minimizing sum of
Kullback-leibler divergences.

Data in high dimensional space is denoted as X, with X =[
x1 · · · xn

]
∈ Rh×n. Low dimensional representation at step t is denoted



as Y (t), with Y (t) =
[
y
(t)
1 · · · y

(t)
n

]
∈ Rd×n. The similarity of datapoint

xj to datapoint xi in high dimensional space is defined as:

pj|i =
exp(−∥xi−xj∥2

2σ2
i

)∑
k ̸=i exp(−

∥xi−xk∥2
2σ2

i
)

(17)

Where σi is the variance of the distribution that is centered on datapoint xi.
Further:

pij =
pj|i + pi|j

2n
(18)

The perplexity is defined as:

Perp (Pi) = 2H(Pi) (19)

Shannon entropy is:
H (Pi) = −

∑
j

pj|i log2 pj|i (20)

The similarity of yi to yj in manifold:

qij =
(1 + ∥yi − yj∥2)−1∑
k ̸=l(1 + ∥yk − yl∥

2)
(21)

The sum of Kullback-leibler divergences over all datapoints is:

C =
∑
i

KL(P | |Q) =
∑
i

∑
j

pij log
pij
qij

(22)

Gradient for minimizing C is then:

∂C

∂yi

= 4
∑
j

(pij − qij)(yi − yj)(1 + ∥yi − yj∥
2)−1 (23)

For first step in t-SNE, compute pij of datapoint xj to datapoint xi, and
initiate Y (0) randomly from N (0, 10−4I). Then for t ∈ {1, 2, . . . , T}, at every
iteration, firstly, compute qij , then result is used for computing C and ∂C

∂Y (t) ,
following update is then made on Y (t):

Y (t) = Y (t−1) + η
∂C

∂Y (t)
+ α(t)(Y (t−1) − Y (t−2)) (24)

Where:
η: learning rate,
T : number of iterations,
α(t): momentum.



3. Experiment

3.1. Methodology

3.1.1. Data sets

Stock prices of five companies, Amazon (AMZN), CME Group (CME),
Microsoft (MSFT), Netflix (NFLX), Texas Instruments Incorporated (TXN)
are chosen to build data sets. Totally, 5 datasets are used for conducting
experiment. Raw data from 2021.05.26 to 2023.12.29, is obtained from
following sources:

Raw data Source
Stock price: https://finance.yahoo.com/
Stock high prices
Stock low prices
Stock index: https://finance.yahoo.com/
Dow Jones Industrial Average
NASDAQ Composite
Monetary and interest rate data: https://fred.stlouisfed.org/series
Federal Funds Effective Rate

Monetary Base

Bank Prime Loan Rate

M1

M2

90-Day AA Financial Commercial Paper
Interest Rate
30-Day, 60-Day Nonfinancial Commercial
Paper Interest Rate

4-Week, 3-Month, 6-Month, 1-Year
Treasury Bill Secondary Market Rate,
Discount Basis

Market Yield on U.S. Treasury Securities
at 1-Month, 3-Month, 6-Month, 1-Year, 2-
Year, 3-Year, 5-Year, 7-Year, 10- Year, 30-
Year Constant Maturity



Market Yield on U.S. Treasury Securities
at 5-Year, 7-Year, 10-Year, 20-Year, 30-
Year Constant Maturity, Quoted on an
Investment Basis, Inflation-Indexed
Inflation, labor data: https://fred.stlouisfed.org/series
Consumer Price Index
Unemployment Rate
All Employees, Total Nonfarm
Exchange rate: https://finance.yahoo.com/
EUR/USD
GBP/USD
USD/JPY
USD/CNY
Commodities: https://finance.yahoo.com/
Gold Dec 24 (future)
Crude Oil Dec 24 (future)
Net income and Earnings per share https://www.sec.gov/submit-

filings
Table 1: Raw data and sources.

Five data sets are created based on collected raw data. Description of
data sets is provided as the following:

Data set number of samples dimension
Stock AMZN 948 141
Stock CME 948 141
Stock MSFT 948 141
Stock NFLX 948 140
Stock TXN 948 141

Table 2. Description of data sets.

TimeSeriesSplit from sklearn is used for splitting original dataset to training
and test data. For experiment, train test data size split is 80-20.

Data set number of samples for training number of samples for test
Stock AMZN 758 190
Stock CME 758 190
Stock MSFT 758 190
Stock NFLX 758 190



Stock TXN 758 190
Table 3: Training and test data.

Price trend label at day t is determined by:

st =


1, if pht > pht−1, plt > plt−1

0, if
(
pht − pht−1

) (
plt − plt−1

)
≤ 0

−1, if pht < pht−1, plt < plt−1

(25)

Where:
pht : high price at day t,
plt: low price at day t.

3.1.2. Computation

Experiment is conducted on google Colab under configuration T4 GPU with
system RAM 51.0 GB and GPU RAM 15.0 GB.

3.1.3. Sources of codes

Following Python implementations are used for conducting experiment.
PCA: Python implementation from scikit-learn is used. Assessment on
number of components for PCA : Python implementation (cross_val_score,
FactorAnalysis) from scikit-learn is used. ISOMAP: Python implementation
from scikit-learn is used. Locally Linear Embedding: Python implementation
from scikit-learn is used. Laplacian Eigenmaps: Python implementation from
scikit-learn is used. T-SNE: Python implementation from developer’s site2 is
used with one modification for avoiding appearance of error. In function
Hbeta, type is set as numpy.float128. When sumP is equal to zero, value is
replaced by 10−10. When sumP is positive infinity, value is replaced by 1010.
When sumP is negative infinity, value is replaced by −1010. K-means: Python
implementation from scikit-learn is used. Fully connected neural network:
Python implementation from Keras is used.

3.1.4. Process of conducting experiment

For every original dataset, k-means and fully connected neural network are
used to conduct clustering and classification on daily trend of stock price.
Then by applying PCA, ISOMAP, Locally Linear Embedding, Laplacian
Eigenmaps and t-SNE, dimension of original dataset is reduced. And newly

2https://lvdmaaten.github.io/tsne/



projected datasets are then used as input for k-means and fully connected
neural network. Number of clusters for k-means is set as 3, because of price
trend definition above. Architecture of fully connected neural network is
configured as following:

Fig. 1. Architecture of fully connected neural network

Neural network is trained by using method of gradient descent. Number
of epochs for training neural network is 2000. Learning rate is 1e-06.

In experiment, dimension of manifold (n_c) is usually configured as 2, 50,
100, 140 except for PCA. Before conducting experiment for PCA, number of
components is calculated based on two methods in 3.1.3. Calculated number
of components is marked bold and represents recommended configuration
of number of components on PCA. Choosing 2, 50, 100, 140 as dimension
of manifold is because, firstly, for most examined manifold techniques, 2 is
default configuration. This is because most manifold techniques are designed
to achieve the goal of projecting high dimensional data on a 2D plane.
Secondly, other dimension settings are used for revealing effect of manifold
techniques more comprehensively. Every result on ACC (mean ± standard
deviation) in experiment is obtained through 20 independent runs.

3.1.5. Metrics

ACC is used both for clustering and classification task. For clustering task,
ACC is used instead of using ARI [6], which is a standard measurement
for performance of clustering task. But for more straightforward comparison
between clustering and classification task on prediction, ACC is used as a
common measurement for performance. For clustering, best match between
permutation of predicted labels and target labels is used for calculating ACC.



3.2. Experiment result

3.2.1. Result of k-means

Datasets No
dimension
reduction

PCA

Stock AMZN 0.47±0.008 n_c = 3 n_c = 28 n_c = 100 n_c = 140
0.46±0.024 0.46±0.018 0.45±0.019 0.46±0.021

Stock CME 0.43±0.020 n_c = 3 n_c = 29 n_c = 100 n_c = 140
0.42±0.017 0.43±0.017 0.43±0.019 0.43±0.018

Stock MSFT 0.45±0.013 n_c = 3 n_c = 28 n_c = 100 n_c = 140
0.44±0.004 0.44±0.009 0.45±0.013 0.45±0.012

Stock NFLX 0.44±0.014 n_c = 3 n_c = 31 n_c = 100 n_c = 140
0.44±0.012 0.44±0.016 0.44±0.012 0.45±0.007

Stock TXN 0.43±0.029 n_c = 3 n_c = 29 n_c = 100 n_c = 140
0.43±0.022 0.46±0.018 0.45±0.024 0.44±0.033

Table 4. Clustering result on no dimension reduction and PCA.

Datasets ISOMAP
n_c = 2 n_c = 50 n_c = 100 n_c = 140

Stock AMZN 0.44±0.008 0.43±0.029 0.43±0.034 0.42±0.032
Stock CME 0.38±0.005 0.39±0.014 0.39±0.017 0.38±0.016
Stock MSFT 0.43±0.010 0.45±0.016 0.44±0.019 0.44±0.018
Stock NFLX 0.45±1.110 0.42±0.033 0.42±0.027 0.42±0.027
Stock TXN 0.41±0.005 0.42±0.029 0.43±0.025 0.42±0.020

Table 5. Clustering result on ISOMAP.

Datasets Locally Linear Embedding
n_c = 2 n_c = 50 n_c = 100 n_c = 140

Stock AMZN 0.44±0.004 0.43±0.011 0.43±0.006 0.43±0.005
Stock CME 0.39±1.110 0.40±0.009 0.40±0.011 0.40±0.006
Stock MSFT 0.41±0.001 0.43±0.018 0.43±0.011 0.43±0.006
Stock NFLX 0.41±0.004 0.41±0.011 0.41±0.007 0.41±0.007
Stock TXN 0.41±0.002 0.41±0.010 0.41±0.006 0.41±0.004

Table 6. Clustering result on Locally Linear Embedding.



Datasets Laplacian Eigenmaps
n_c = 2 n_c = 50 n_c = 100 n_c = 140

Stock AMZN 0.45±0.002 0.43±0.014 0.43±0.013 0.43±0.011
Stock CME 0.41±5.551 0.40±0.015 0.40±0.014 0.39±0.014
Stock MSFT 0.44±0.002 0.42±0.021 0.41±0.019 0.42±0.023
Stock NFLX 0.42±0.001 0.40±0.014 0.41±0.019 0.41±0.014
Stock TXN 0.45±0.002 0.41±0.012 0.41±0.012 0.41±0.012

Table 7. Clustering result on Laplacian Eigenmaps.

Datasets t-SNE
n_c = 2 n_c = 50 n_c = 100 n_c = 140

Stock AMZN 0.39±0.010 0.42±0.026 0.42±0.023 0.41±0.022
Stock CME 0.40±0.004 0.39±0.019 0.39±0.020 0.39±0.019
Stock MSFT 0.36±0.013 0.40±0.023 0.41±0.018 0.41±0.016
Stock NFLX 0.36±0.007 0.41±0.024 0.41±0.022 0.40±0.026
Stock TXN 0.39±0.014 0.42±0.024 0.43±0.029 0.43±0.020

Table 8. Clustering result on t-SNE.

Fig. 2. Visualization of clustering results.

3.2.2. Results of neural network

Datasets No dimension reduction
training test

Stock AMZN 0.702±0.007 0.705±0.014
Stock CME 0.677±0.005 0.664±0.012
Stock MSFT 0.688±0.006 0.661±0.009
Stock NFLX 0.674±0.006 0.658±0.010
Stock TXN 0.684±0.007 0.689±0.011

Table 9: Classification result on no dimension reduction.











3.3. Discussion

3.3.1. K-means

Clustering results obtained from PCA generally can surpass other dimension
reduction techniques. But it should be noticed that best result of PCA
doesn’t always correspondent to assessed number of components by methods
mentioned in 3.1.3. Generally speaking, experiment results have shown that
dimension reduction techniques often tend to worsen clustering performance
of k-means. For all methods, there is at least one observation for not
worsening clustering performance except Locally Linear Embedding. There
is no observation for not worsening clustering performance for Locally Linear
Embedding.

3.3.2. Neural network

For dataset AMZN, almost all methods tend to decrease neural network
performance. Only PCA slightly improves neural network performance with
number of components equal to 140. For dataset CME, most methods
tend to slightly improve neural network performance. Improvement is
generally less than 1 percent. For PCA, improvement of neural network
performance is achieved at n_c= 29 and n_c = 100. For ISOMAP,
improvement of performance is achieved at n_c = 2. Improvement of
performance for Locally Linear Embedding is achived at n_c = 2 and
n_c= 50. Improved performance for Laplacian Eigenmaps is achieved at
all number of components. T-SNE improves performance of classification
at n_c = 2, 50, 100 with best improvement among all method at n_c
= 100. ISOMAP tend to more often decrease performance than other
methods. For dataset MSFT, all methods tend to decrease classification
accuracy except Laplacian Eigenmaps. Laplacian Eigenmaps can stably
improve performance at all number of components. Other methods can
all improve performance at lowest number of components but to worsen
performance at other number of components. For dataset NFLX, all methods
can all improve performance at lowest number of components. And PCA
and Locally Linear Embedding can archive improvement correspondingly at
n_c = 100 and n_c = 5. Again, Laplacian Eigenmaps can stably improve
performance at all number of components. For dataset TXN, all methods
worsen performance without exceptions. Generally speaking, improvement
achieved by all methods is slight, usually less than 1 percent. For different
dataset, improved performance by different methods is different. For best
method, Laplacian Eigenmaps should be mentioned, as Laplacian Eigenmaps
can stably improve classification accuracy for three datasets at all number of
components.



3.3.3. Total result

The conclusion on PCA from clustering results of k-means supports the
findings in [5]. Although result from PCA generally can be better than
other dimension reduction techniques, but it’s also observed that dimension
reduction techniques often tend to worsen clustering performance of k-means.
For classification task, observed improvement achieved by all methods is
slight, usually less than 1 percent. Laplacian Eigenmaps can stably improve
classification accuracy for three datasets at all number of components while
other methods aren’t able to achieve such performance. One assumption
based on experiment can be raised: structures of data sets containing different
stock prices can be very different. And there is no proof for that there exists
one effective method for different stock data sets. Even the dimensions of
data sets used in this experiment are almost same (except stock NFLX). And
macroeconomic features of data sets are largely same. Thus, performance of
examined techniques on stock data sets looks like the general performance of
machine learning algorithms on different natural data sets.

3.3.4. Advantages and limitations

This work provides a more comprehensive study on manifold leaning
techniques for financial data than previous works. Firstly, more methods
are examined. Secondly, study has appropriately organized advantages of
previous works, so conclusions are more convincing. In previous works,
disadvantage on organizing experiment exists either in methodology of
building dataset (for example, risk free rate is not considered) or type of
examined methods (for example, only methods that are related with PCA are
considered). Disadvantage also exists on the fact that only one of two tasks
(clustering and classification) has been involved on drawing conclusion, but
not both. These insufficiencies have negatively affected reached conclusions
by these works. All mentioned insufficiencies have been properly addressed in
this work. Future work can be improved further by involving more manifold
leaning techniques that haven’t been examined in this work.

4. Conclusion

In this work, effect of manifold learning techniques on predicting stock price
trend is more carefully examined than previous works. Effect of manifold
learning techniques on improving classification task result is slightly more
obvious than that on clustering task. In clustering task, manifold learning
techniques tend to often worsen clustering performance. In classification
task, observed improvement achieved by all methods is slight, usually less
than 1 percent. And only Laplacian Eigenmaps can more often stably



improve classification accuracy at all number of components while other
methods aren’t able to achieve such performance. There is no general effective
technique for different stock data set. This result reminds about general
performance of machine learning algorithms on different natural data sets,
dimension of which can be very different.

Code and data availability

Code and data are available upon request.
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