MockoBckum ['ocygapCTBEeHHbIM YHUBEpPCUTET
nmenn M.B. JlTomoHocoBa

Poccunckas Akagemunsa Hayk
MexayHapoaHas Akagemunsa TexHonorndyeckmx Hayk
Poccuinckas Akagemus EctectBeHHbIX Hayk

UHTennekTyanbHbIe
Cucremsbl.

Teopus n NpUNoOXeHUs

TOM 25 BbINYCK 5 » 2021

MOCKBA

ISSN 2411-4448
VYK 519.95; 007:159.955
BBK 32.81 Mznaerca ¢ 1996 r.*

T'smaBHbIl pegjakTop: A.¢.-M.H., npodeccop B.B. Kynpssres

PemaknmoHHast KOJ1JIernusi:

n.d.-M.H., mpod. A. E. Arapees (3am. rmaBHOrO pesakrTopa)
n.d.-M.H., mpod. .. acanos (3am. rmaBHOrO pesakTopa)
K..-Mm.H., jor. A. C. Crporajios (3am. rmaBHOrO pesakTopa)
K.(p.-M.H., M.H.c. B. B. Ocokun (oTBeTCTBEHHBIN CEKpeTaph)

n.d.-M.H., mpod. B. B. Anekcanapos, a.¢.-M.H., npod. C. B. Anemwun, a.¢.-M.H., mpod.
. H. Babun, akagemuk PAH, n.d.-m.H., npod. FO. JI. Epmos, akanemuk PAH, n.d.-M.H.,
npod. 0. 1. XKypasies, a.¢.-M.H., mpod. B. H. Koznos, wi.-kopp. PAH, x1.¢.-M.H.,
npod. A. B. Muxases, k.d.-M.H., npod. B. A. Hocos, a.¢.-m.H., mpod. A. C. [ToakonsuHx,
a.T.H., mpod. . A. ITocrenios, a.¢d.-m.H., npod. FO.II. IIeithbes, akagemuk PAH, m1.1.H.,
npod. A. C. Curos, a.¢d.-M.H., npod. A. B. Heukun

Me>xkayHapoJHbIH HAYYHbII COBET >KypHaJia:

C.H. Bacuinbes (Poccust), K. Bamuk (lepmanust), B. B. Besmuenko (Poccust),

4. Hemerposud (Benrpus), I Kumubapa (Cepbus), 2K. Kunan (Cnosenus), I1. C.
Kpacuomekos (Poccust), A. Hozaku(fAunounus), B. H. Peapko (Ykpanna), A. II. Poixos
(Poccust) —y4enslii cekperapsb coera, A. Canomaa (Puunsinnust), C. Cakcuna
(Cnosennst), B.Tanbxaiim (Iepmanus), 111 Yuraymimma (Cepbust), @an Jun 3uey
(Boernam), A. Ilaite6(Cupust), P. [Tuenanosua (CIIIA), I'. ITummvepman (Fepmarmust)

Cekperapb penakuum: . O. Beprep, E. B. Kysuernosa

B xypnase «MuTennekryaibubie cucTeMbl. Teopust 1 IPUJIOKEHUsT> yOJTUKYIOTCS Ha-
YUHBIE JOCTUXKEHHsI B 00JIACTA TEOPUU U NIPUJIOYKEHUH WHTEJJIEKTYAJIbHBIX CUCTEM, HOBBIX
nHAMOPMAIMOHHBIX TEXHOJIOIUN U KOMIILIOTEPHBIX HAYK.

W3znanue xxypuamna ocymectsisgercs nox srunoit MI'Y umenn M. B. Jlomonocosa, Ha-
yunoro Cosera 110 KoMIuiekcHo# npobieme «Kubepuerukar PAH, Otnenenus «Marema-
THYeCKoe MojieupoBanue Texnosiornieckux mnporeccos> MATH, Ceknun «Mudopmaruku
u kubepuerukn» PAEH.

Vupenurens xxypHaia: OO0 «VHTe1eKTyalbHbIE CUCTEMBI».

2Kypuaut Bxonur B ciucok mnsganuii, BkioueHabix BAK P® B peectp nybaukanmit
MAaTEPUAJIOB 10 KAHIUJATCKAM U JIOKTOPCKUM JUCCEPTALUIM [0 MATEMATHKE U MEXAHUKE.

CHOHCOpOM NU3OAHUA ABJIACTCA:

000 «/IBa Ob6saka»
PazpaboTka KOprmopaTuBHLIX HH(MOPMAIIMOHHBIX CHCTEM
http: //www.dvaoblaka.ru

Wnnekc moanuckn na xypHat: 64559 B katasmore HTU «Pocreuarss.

Anpec pepaknun: 119991, Mocksa, I'CII-1, Jleaunckue Iopsr, 1. 1, MexaHuKO-Ma-
Temarndeckuit pakysibreT, KomH. 12-01.

Anpec mznarensa: 115230, Poccusi, Mocksa, Xaebo3zaBojckuii mpoess, 1. 7, cTp. 9,
oduc 9. Tes. +7 (495) 939-46-37, e-mail: mail@intsysjournal.org

*) Hpe)}(Hee Ha3BaHUE 2KypHaJla: «I/IHTGJI.HGKTyaJIbHBIe CHUCTEMbI».

© 00O «MHuTre/eKTyaJ bHbIe CUCTEMBI», 2021.

OI'JIABJIEHUE

Alekseev D.V. Necessary and sufficient conditions for the existence of an image
with a given code ... o 5

Gasanov E.E. Cellular automata with locators 15

Vasilev D. I. The one-dimensional closest neighbor search problem solution using
the cellular automata with locators o i i 27

Kalachev G.V. Remarks on the Definition of Cellular Automaton with Locators 45

Sitdikov T. R., Kalachev G. V. The complexity of multilayer d-dimensional circuits
55

Vasilev D. I. The two-dimensional closest neighbor search problem solution using
the cellular automaton with locators i 75

Gasanov E.E., Propazhin A.A. Implementation of key-value databases by cellular
automata with locators 79

Necessary and sufficient conditions for the
existence of an image with a given code !

D.V. Alekseev?

The article introduces an image encoding function which is
invariant with respect to affine transform. The properties of the
encoding funciton are investigated. Necessary and sufficient conditions
are found for a given set of numbers to be a code of nonsingulari image.

Keywords: image code, image encoding, affine equivalence.

Introduction

Recognition tasks often require some image encoding. One of the most
commonly used image codes is just the coordinates of its points. This
encoding is not invariant under geometric transformations, such as
translation, rotation, stretching. Despite that the images obtained by such
transformations are considered to be equivalent. In addition, that encoding
implies fixing some external (to an image) coordinate system.

An affinity invariant image coding was introduced in the papers [4]-[5].
It was shown that the the codes equality of two images is a necessary and
sufficient for them to be affine equivalent. This work introduces a modified
coding function and researches the properties of that coding function. As a
result the necessary and sufficient conditions are derived for an existence of
image producing the given code.

The necessary and sufficient conditions for the existence of a three-
dimensional image with two given planar projections were derived in [2].

In [5] an affine invariant coding function p was introduced: pjjximp =

%‘% where S(abc) stands for the area of the triangle abc. Thus, a set of

n points is encoded by (C2)? real numbers. Obviously, this code is redundant.
This work examines the degree of its redundancy. In case of modified encoding
the explicit conditions were derived that an arbitrary list of real numbers is
the code of some image. For the original encoding function, the respective
(implicit) conditions are also given.

In this paper we consider a modified coding function 7k mp =
%, where S’ stands for the oriented area, i.e. area with a + sign
depending on the triangle orientation.

L Originally published in Intellektualnye Sistemy. Teoriya i prilogeniya (2020) 24,

No. 2, 55-66 (in Russian).

2 Alekseev Dmitriy Vladimirovich — Candidate of Physical and Matematical
Sciences, senior staff scientist, Lomonosov Moscow State University, Faculty of Mechanics
and Mathematics, Problems of Theorecical Cybernetics Lab, e-mail: dvalex@rambler.ru

The rest of the paper is organized in the following way: The basic concepts
and notation are introduced in section 1. The properties of the image code
matrix are researched in section 2. The main result is formulated and proven
in section 3. Section 4 is a conclusion.

1. Concepts and notation

Let S’ be the oriented triangle area, i.e. S’(Aabc) = S(Aabe) for the positive
triangle orientation and S’(Aabc) = —S(Aabe) for the negative one. The
triangle orientation is considered to be positive when the triangle vertices
are traversed in counterclockwise order and negative otherwise.

Consider the points ay, ..., a, on a plane, let call the set A = {ay,...,a,}
an image. An image is called emphdegenerate if all points lie on one straight
line and non-degenerate otherwise. Fix some (Euclidean) coordinate system,
the coordinates of the point a; will be denoted as X (a;) and Y'(a;). In the
following, for convenience, individual indices will be denoted by lowercase
Latin letters.

Let call multi-index, a vector comprising three indices. The multi-indices
will be denoted later in the text by lowercase Greek letters a, 3,7, The
multi-index components will be denoted by a = [a(1),«(2),«(3)]. The
triangle ! with the respective vertex indices will be denoted as A, =
Dag(1)@ alpha(2)Ta(3)-

Let call multi-indices o and o' equivalent if and only if the permutation

o(1) a2 o) . e
<a/(1) o(2) o (3) € S3 is even and denote it @ ~ o'. Let call

the multi-index conjugate to a and denote it @ if the permutation
(a(l) a2) «3)
a(l) a(2) a3)
multi-indices have the same oriented area, and the triangles with conjugate
multi-indices have areas with the same absolute values and different signs.
Later we do not distinguish between equivalent multi-indices i.e. regard them
as the same multi-index. The same will be applies to the respective triangles.
In total, there are C3 different unoriented triangles with vertices from
A ={ay,...,a,}, and respectively N = 2 - C2 oriented ones.
Let enumerate all multi-indices (and the respective triangles): aq, ..., ay.
Let A = {aq,...,an} be the set of all multi-indices, and F : o; + i be the
respective enumeration function.

) € S5 is odd. Obviously the triangles with equivalent

S’ (Aasajar)
S"(Aajamap) *
Aajamay is degenerate, i.e. S'(Aajama,) = 0, then use formal notation

Consider the following set of fractions: r;jx jmp = If triangle

!We will also use this notation in the case when the triangle is degenerate.

Tijkimp = 00. Let call the set the code for image {a1, ..., a,}. Similar encoding
procedure was proposed in [1].

Definition 1. Consider N x N matrix R = (r;;) with the elements r;; =
Taso5 = %. Thus, the elements of the image code are arranged in a
square table, in which the rows and columns are enumerated by multi-indices
(triangles). Let’s call R the image code matriz.

Note 1. Leater the notation r apha beta = RE(0)E(3) Will be, i.e. rows and
columns of the code matrix can also be indexed with multi-indices.

Example 1. Consider a trapezoid ajasagaq, with bases ai1as and agaz such
that |ajag| : |agag] = 1 : 2 (see fig. 1). Let enumerate multi-indices as in

ai a2

a4 a3

Fig. 1. Example 1.

table 1. Notice that the last four multi-indices are conjugate to the first
four, so it is sufficient to construct only the part of the image code matrix
corresponding to the first 4 rows and columns. The submatrix is the following:

11 1/2 1/2
Ry = ; ; 1{2 1{2 . The complete code matrix has the following form:
2 2 1 1

(R -Ry
R= (_ b)
2. The properties of a code matrix

1) raq = 1 unm oo, for all a € A (reflexivity).

2) For all o, € A such that rog ¢ {0,00} holds rg, = ré_ﬁl) (anti-
symmetry?).

3) For all a, 8,7 € A such that ro5,73, € {0,00} holds 74y = rag - 734
(transitivity).

2If rop = 0 then rgo = co. The converse is generally not true.

Q;

1 1,2,3]
1,2,4
1,3,4
2,3,4
1,3,2
1,4,2
1,4,3
2,4,3

OO\ICDOT»-&CO[\DH‘@~

Table 1. Multi-index table

4) Let m,0 € S3 and «,8 € A. Let multi-indices o/ = m(a) and
B = o(B) are the results of permutations = and o applied to multi-
indices v and 3, respectively o = [a(7(1)), a(7(2)),a(7(3))] u ' =
[B(c(1)),B(c(2)), B(c(3))]. Then either rog = (=1)" - (=1)7 - r4p, or
rag = 00 = /g (consistency with index permutations).

5) Let iy,i9,i3,i4 € {1,...,N}, oy = lig,i3,14], g = [iz, 14,01, a3 =
li4,%1,92] m ou = [i1,12,73). Then for any 8 € A the equality ro,5 +
Tass = Tags + Tayp holds® (additivity).

Properties 1-3 are obvious. Property 4 follows from the change in the
oriented area sign at permutations of vertices. To prove property 5 we
calculate the area of a quadrilateral a;, a;,a,a;, (see. fig. 2) by two ways:

S/(ai1ai2ai3ai4) = S/(Aai2ai3ai4) + S/<Aai4ai1ai2) =
= S’(AaiSamail) + S'(AailaiQais).

Divide the equality by S’(Ag) and get the property 5.

It is natural to ask: are these conditions sufficient for an arbitrary matrix
to be the code of some image? A counterexample below will show that this
is not true.

Let prove the following helper lemma:

Lemma 1. Consider non-degenerate triangle Ag and denote p, = 743,
a € A. Fiz an euclidean coordinates on a plane. Then there exist an
affine transform F such that images of a;,i = 1,...,n i.e. ¢; = F(a;), have
coordinates X (c;) = p; g3),8(1), Y (Ci) = pig(1),82)-

Proof. Assume without lost of generality that 5 = [1,2,3]. There exists
one and only one affine transform A such that a; — ¢1(0,0), ag — ¢2(1,0)

3Consider the equation formally, as co 4+ 0o = 0o + 00, when the denominator is zero.

Fig. 2. Area Additivity: Shsy + Shos = S1a3 + Siza-

and az — ¢3(0,1). Let (z;,y;) be the coordinates of ¢; = A(a;), i = 1,2,3.

Then S'(Acicacs) = %, S'(Acsgere) = %xZ and S’ (Acieae;) = %yl Thus
S'(A i S'(A i

P31, = % =x; and p31,; = ﬁ = y;. Proof complete.

Corollary 1. Let Ag be a non-degenerate triangle and

PiB(1).B2) = PiBL)AR) = PEA1).BER) = P
then the points a;, a; and ay, are collinear.

Proof. According to lemma 1 there exists an affine transform A such that
A(a;) = ¢, Alaj) = c¢j,A(a;) = ¢j so that Y(¢;) = Y(c¢j) = Y(ex) = p*.
Then c¢;, ¢; and ¢, are collinear, therefore a;, a; and a; are collinear too.

Corollary 2. Two non-degenerate images A and B are affine-equivalent if
and only if their code matrices are equal for some points numeration.

Note 2. This corollary is analogous to Theorem 1 from [4] (for another
coding function).

Proof. Oriented areas ratio is conserved under affine transformation so if
A is affine image of B their code matrices are the same.

Let us prove the sufficiency. In a non-degenerate image there exists a non-
degenerate triangle Ag(A) = Aa;ajay. As the code matrices are equal then
the respective triangle Ag(B) = Ab;b;by, is non-degenerate too. Consider an
image C' with points’ coordinates X (c;) = p; g(3),8(1), Y (¢i) = pi,p(1),82))-
Then by lemma 1 one can construct the affine transforms F; : A — C u
Fy: B — C. Therefore, A and B are affine equivalent. Proof complete.

Let us show by an example that properties 1-5 are not sufficient for the
existence of an image, with a given code matrix.

Example 2. Consider a regular pentagon with vertices aq, ..., as. Let us
denote the intersection points of the diagonals by, ..., b5 (see Fig. 3). Place the
points my, ms and mg inside the triangles Aajasby, Aagasbs and Aagbibs,
respectively.

Let place unit masses at these points. For a triangle Aa;ajay, consider
the total mass of points, located inside it. We will call this mass taken
with the 4+/— sign depending on the direction of the bypass, pseudo-area
of a triangle trianglea;aja, and denote S*(Aajajay). Obviously, for the
pseudo-area, additivity property holds. Consider the matrix R = (rag),
rag = S*(ANa)/S*(Ap). Properties 1-3 are fulfilled for it by construction,
property 4 follows from the definition of pseudo-area, and property 5 is due
to its additivity.

Suppose that R is code matrix for some image a}, ..., af. Notice that

T123,123 = T124,123 = T125,123 = 1,

then by corollary 1, the points aj,ay and af are collinear.
Then Adjajal has zero area, thus 7345123 = 0. But it contradicts to

345,123 = 1 # 0.

Note 3. The concept of pseudo-area can be defined more strictly. To do

this, place rice. 3 on the complex plane and interpret points as elements of
. . . _ 1 1 1
C. Consider a meromorphic function f(z) = i T 75m; T 7=m;» then, one

can define the pseudo-area of a triangle as the following contour integral

S*(Aaajar) = % % f(2)dz.

Aajajay

3. OcHoBHBIE PE3YJILTATHI

So, conditions 1-5 are not sufficient for the existence of an image with
the given code matrix. The theorem below answers the question — what
additional conditions can ensure the existence of such an image.

Theorem 1. Let the matriz R satisfy conditions 1-5. Let there exist o, f € A
such that ro g # 0o. Then R to is the code matriz of some non-degenerate
mmage, if and only if for any i,7 = 1,...,n the equality

PB(1),ij = Pi(3),8(1) * Pi.B(1,68(2) — PiB(3),6(1) * Pi,B(1),6(2) (1)

is satisfied (here po stands for rq).

10

as e

a4

Fig. 3. Example 2.

Proof
Necessity. Let 8 = [1,2,3] without loss of generality. Consider an affine
transform A from lemma 1 proof. It maps the points as, s = 1,2, 3 to ¢;(0,0),
c2(1,0) and ¢3(0, 1), respectively. Obviously S'(Acicacs) = 5. The transform
maps the points a; and a; to ¢; and ¢;, with the coordinates X (¢;) = pi31,
Y (ci) = pijn2, and X(¢;) = pj31, Y(c;) = pj1,2, respectively. Then oriented
area of Acyc;cj is computed by well-known formula:

S(Acicicy) = idet <X(Cj) Y(e;)) = 5(/%‘,3,1 P2 — P31 Pil2)-

Divide the equality by S'(Acicacs) = 3, we have an equality (1).

Sufficiency Let the matrix R satisfies the equality(1). Construct the set
of points {a; : ¢ = 1,..., N} such that coordinates are X (a;) = p;i 3.1, Y (a;) =
pi1,2. Construct the code matrix for that image R* = (7“;3). Later we will
show that it equals to the given matrix R.

11

Denote pf, = r}5. Let a = [i, 7, k], consider an intersection P = {i,7,k} N
{1,2,3}. Actually P is a common indices set for o and f.
Possible cases:

y/\

ai(pi1,2; pi31)

a3(0;1) ¢

a1(0;0) a2(1;0)

g

Fig. 4. Cnyuait |P| = 2.

e The case |P| = 3. Then a = [7,7, k] is a permutation of 1,2,3, i.e. it
is eithe &« = B or & = 8. Then S'(Ag) = 3 and S'(Ag) = —3. Thus,
ps=1=pg andpE:I:pB.

e The case |P| =2 and 1 € P (see fig. 4). In other words the triangles
A, and A\ share two common vertices and one of them is the origin
of coordinates. One of i, j, k is not an element of {1,2,3}, let it be
1 without the lost of generality. If the remaining indices are 1 and 2,
then? a = v or a = 7, where v = [1,2,14]. If @ =~y then

, , 1 1
S'(Ay) = S (Aaiaraz) = iy(ai) = 5PiL2
Divide the equality by S"(Ag) = 1/2 we have p} = p,. If, on the other
hand o = 4, then p}, = p5 = —p5 = —py = p5. The case P = {1,3} is
considered the same way.

e The case P = {2,3} (see fig. 4). In other words the triangles A, and A\
share two common vertices a; and as. One of i, j, k is not an element
of {2,3}, let it be 7 without the lost of generality.

Then either & = 6§ or a = 4§, where § = [i,3,2]. If a = § then by
property 5 (additivity)

* * * * *
Po = Pi32 = Pi31 T P12~ P123 = Pi31 1 Pi1,2 — P123 = Pi32 = Pa-

4Recall that the multi-indices are equivalent with respect to a cyclic permutations.

12

The third equality here follows from pj; 5 = pi12 and pi3; = pi3;
proved earlier. If, on the other hand a = 4, then pf, = ps = —p5 =
—ps = p;-

y/\
a;j(pj1,2;Pj3.1)

as(0;1) ¢
ai(pi1,2; pi3,1)

a1(0;0) az(1;0) T

Fig. 5. The case P = {1}.

e The case P = {1} (see fig. 5). In other words the triangles A, share
Apg a single common vertex located in the origin.

Assume that the rest to vertices are a; and a; without the generality
loss. Consider the triangle Aaja;a; with oriented area

1 X (473 Y Qg 1
S'(Aaraiaj) = §'det (Xéaji YE@@%) = 5‘(/02',3,1'pj,1,2_pj,3,1'Pi,l,2)’

Divide the equality by S’'(Aajazas) = 1/2, we will have Plij = Pi31"
Pj12 — P31 Pil,2 = Pl,j, Where the last equality follows from (1).

e The general case: when ¢, j, k are arbitrary indices. Both p and p* are
additive. So p; ;. = pi,; ;i +p] jx — P1;xs that (as in the previous case)
equals to p1;; + p1,jk — P1,ik = Pi,j k- Proof complete.

Getting back to the codes using non-oriented area (|4]).

Definition 2. Let call the sign assignment an arbitrary set of numbers
Sq,8 € {£1}, where o, 3 € A. Let call the sign assignment consistent if for
all a, 8,7 € A the following conditions hold:

1) SaB " Spy = Say;
2) Sr()e@) = (=17 (=1)7 - 84p, T,0 € Ss.

Note 4. Obviously, a consistent sign assignment satisfies soq = 1 and sog =
sgq for all o, B € A.

13

Corollary 3. The set of numbers r;ﬁ is the code of a non-degenerate image
if and only if there exists a consistent sign assignment s, g, such that for
TaB = Sap " Thg the conditions 1-5 and (1) hold.

Proof

Necessity Just set s, g = 1 if the triangles A, and Ag have the same
orientation. Then apply theorem 1.

Sufficiency Construct an image with code matrix R = ((rqg)) by theorem
1. Then take 77,5 = ITas].

4. Conclusion

The main result of this paper completely describe the set of non-degenerate
images codes. The future plans are to build similar conditions for other coding
functions, e.g., projective equivalence preserving coding functions or for 3-D
affine equivalence preserving.

References

[1] Arawnamsusm ILT., “OH03HAYHOCTD BOCCTAHOBJIEHNST M300PAYKEHUS 110 €r0 KOy
B n-MepHOM ciydae’, Hnumeanrexmyanvroe cucmemol, 15:1-4 (2011), 293-332.

[2] Anexcees /I.B., “K Bompocy 0 BOCCTAHOBJIEHHH TPEXMEPHOIO TeJa 110 €ro IJI0C-
KUM TpoeKIusaM’, Hnmennexmyasvhoie cucmemui. Teopus u npunsosicenus, 21:4
(2017), 66-85.

[3] Kozmos B.H., “Jloka3aTesbHOCT 1 9BPUCTUKA IPU PACTIO3HABAHUY BU3YAIbHBIX
o6pazoB”, Humearexmyasvrve cucmemor, 14:1-4 (2010), 35-52.

[4] Kozmos B.H., Saemenmur mamemamuueckoli meopuu 3pumesvHo20 80CIpus-
muasa, zg—so HIIN npu mex.—mat. d—1e MI'Y, Mocksa, 2001, 128 c.

[5] Kosuos B.H., “O koguposanuu auckperusix buryp”, Juckpemnas mamemamu-
xa, 8:6 (1996), 57-61.

[6] Kozlov V.N., “Image Coding and Recognition and Some Problems of Stereo-
vision”, Pattern Recognition and Image Analysis, 7:4 (1997), 448-466.

14

Cellular automata with locators !

E. E. Gasanov?

This article introduces a new mathematical object called a
cellular automaton with locators. It was created by implementing
new functionality for an automaton to broadcast broadcasting signals
and to receive summarized broadcasting signal of all elementary
automata. This article highlights several problems which solution is
greatly simplified by using cellular automata with locators instead of
traditional cellular automata.

Keywords: cellular automata, homogeneous structures, firing squad
problem, motion picture design, constructing the shortest path.

1. Introduction

Cellular automata (other names: self-reproducing automata and homogeneous
structures) are discrete mathematical models of a wide class of real systems
along with the processes taking place in them.

Theory of self-reproducing automata was introduced by John von
Neumann|1, 2| to describe the processes self-reproduction in biology and
technology. His model was further developed and the term “Cellular
automaton” as it described below was used by A. Burks [3], E. Moore [4],
V. B. Kudryavtsev, A. S. Podkolzin, A. A. Bolotov [5] and other researchers.

Cellular automaton is a mathematical object with discrete space and
time. Its every position in space represented by a single cell, and each moment
in time represented by discrete time step or generation. The state of each
spatial cell is determined by very simple rules of interaction. These rules
prescribe changes in the state of each cell in the next time step in response
to the current state of neighboring cells. Moreover, for different cells, the
rules for changing states may be different.

If we choose a finite automaton as a transformer of information standing
in a cell of space, the same one for all cells, then we come to the concept
of a homogeneous structure. In this case, the cellular automaton is an
infinite automaton circuit constructed as follows. Consider the k-dimensional
Euclidean space. We divide it into hypercubes with a unit edge, the edges of
which are parallel to the coordinate axes. In each hypercube we put the same
finite automaton V' with m inputs and one output. We branch the output of

1Originally published in Intellektualnye Sistemy. Teoriya i prilogeniya (2020) 24, No.
2, 121-133 (in Russian).

2 Gasanov Elyar Eldarovich — professor, Lomonosov Moscow State University, Faculty
of Mechanics and Mathematics, Chair of Mathematical Theory of Intelligent Systems,
e-mail: el gasanov@gmail.com.

15

the automaton and connect it with the inputs of its neighbors in the same way
for all hypercubes in space. We get an infinite homogeneous way arranged
automaton scheme, which is called a cellular automaton. The sequence of
states of individual automata V', containing the states of all automata of
the circuit, form the state of the cellular automaton. The sequence of states
of a cellular automaton arising from the synchronous operation of all its
individual automata is called the functioning of a cellular automaton.

Cellular automata are a discrete mathematical model of a wide class
of real systems along with processes occurring in them, such as physical
media in which thermal and wave phenomena are realized, chemical solutions
with reactions in them, biological tissues in which metabolism occurs,
and technical control schemes processing mechanical and electrical signals,
computational circuits, etc.

If we set the initial states of the automata, then in the circuit the
states of the automata start to change in the way determined by the laws
of the functioning of automata and the relationships between them. The
phenomenon of a global change in these states is the main object of study in
the theory of cellular automata.

This article introduces the generalization of a cellular automaton, which
is proposed to be called a cellular automaton with locators.

One of the serious limitations of cellular automata is the limitedness of
the neighborhood pattern, i.e. each automaton can see a certain number of its
neighbors, and thus signals in cellular automata propagate relatively slowly.
It is proposed to provide cellular automata with the ability to transmit some
signals to all elementary automata at the same time, which will overcome
the locality property.

Here we can recall the model of an incompressible fluid, in which the
signals also instantly propagate throughout the entire volume. A similar
picture is observed in quantum mechanics and in quantum cellular automata
[6], when a change in the state of one automaton causes a change in the state
of all automata “entangled” with it. In the work [7], the concept of nonlocal
cellular automata is introduced. In this paper, nonlocality means that for each
elementary automaton, the set of its neighbors is chosen randomly, and thus,
elementary automata that are far apart from each other can be neighboring.

In real life, a person, when he wants to transmit information not only to
visible neighbors, he can take advantage of such techniques as the supply of
light signals using signal flares. An even more common method is the use of
radio and television broadcasts.

Here, we also introduce the concept of broadcasting. Each elementary
automaton is considered to be able to broadcast some signal from the
finite alphabet on the air. Elements of the alphabet form a finite additive
commutative semigroup, and the air itself is a potentially infinite adder

16

of signals of elementary automata, where the defining operation of this
semigroup acts as a sum. At the next clock, each elementary automaton
receives a total signal from the air and changes its state according to the
signal. In nature, such an adder is air that sums all the radio signals in a
natural way, and in fact each of the receivers gets the same signal at the
input, and only then it extracts the necessary component from the general
signal.

With the help of this principle, one can implement a new type of
integrated circuits that use some substrate as an adder, onto which all
elementary automata will dump some switching or emergency signals.

Introduction of broadcasting concept and the ability to transmit signals
instantly at any distance allows one elementary automaton to control the
behavior of another elementary automaton arbitrarily far from it. We
consider cellular automata with locators that can receive signals from certain
directions. In other words, each elementary automaton has several locators
directed in different directions, and it can use these locators to receive signals
from the very directions.

This article introduces a formal model of cellular automata with locators.
The solution of several tranditional problems and new challenges using
standard cellular automata is given. Then, it is shown that the same problems
can be solved much easier using cellular automata with locators.

2. The concept of cellular automaton with locators

We introduce the concept of a cellular automaton with locators based on the
definition of a cellular automaton from (8.

By a solid angle in R¥ we mean the union of all the rays in the space R¥
emanating from a given point (vertex of an angle) and intersecting some
hypersurface in R¥. We assume that a solid angle does not contain its vertex.
In particular, in this paper we consider two degenerate cases: the full solid
angle coinciding with R* without the vertex of the angle, which we denote
by €2, and solid angles equal to one ray. If a solid angle is a ray, we denote it
by a vector defining its direction.

A cellular automaton with locators is a 8-tuple

o = (ZF, E,, V,Ey,+, L, p, 1))

where ZF is the set of k-dimensional vectors with integer coordinates,

E, ={0,1,...,n =1}, V = (au,...,ap_1) is an ordered set of pairwise
different nonzero vectors from Z*, E,={0,1,...,g—1}, + is a commutative
semigroup operation defined on Ey, L = (vi,...,Vy) is an ordered set of

pairwise different solid angles in R* with a vertex at the origin, ¢ : Eg XEJ" —

17

FE, is a function depending on the variables zg,z1,...,Zh_1, 21, .., 2m such
that (0,...,0) =0, ¢ : Bl x EJ* — B is a function that depends on the
variables xg, 1,...,ZTp_1,21,- -, 2m. Here the variables xq, z1,...,x,_1 take
values from F, and the variables z1,..., 2z, take values from E,. Elements
of the set ZF are called cells of the cellular automaton o; elements of the
set E,, are called cell states of the cellular automaton o; the set V is called
the neighborhood pattern of the cellular automaton o; elements of the set £,
are called broadcasting signals; the set L is called the locator pattern of the
cellular automaton o; the function ¢ is called the local transition function of
the automaton o; the function 4 is called the broadcasting function of the
automaton o. The state 0 is interpreted as quiescent state and the condition
©(0,...,0) = 0 is interpreted as a condition for maintaining the quiescent
state.

Here we need to introduce an ordering of the neighborhood pattern V'
and the locator pattern L in order to establish a one-to-one correspondence
between vectors from V and solid angles from L and variables zg,
Ti,.-.yTh_1, Z1,---,2m Of the local transition function ¢ and the
broadcasting function ¢ respectively. We can make this correspondence
more explicit if we index the variables of the functions ¢ and ¢ by the
vectors and solid angles themselves, i.e. assume that the local transition
function ¢ and the broadcasting function ¢ depend on the variables zg,
Tags--rTap_1s Zury- -« s 2um, Where the index of the first variable is the zero
vector 0 = (0,...,0) € ZF. If we index the variables of the local transition
function and broadcasting function in this way, we can write them in any
order, and then we can define the neighborhood pattern and the locator
pattern simply as a set, not an ordered set.

In the quiescent of this section we use these conventions: consider the
neighborhood pattern as a set of vectors, and the locator pattern as a set
of solid angles and index the variables of the local transition function and
broadcasting function by the vectors from the neighborhood pattern and solid
angles from the locator pattern. At the same time, we often omit the outer
parentheses of the vectors in the indices. For example, if k =2, n =2, ¢ = 2,
V = {(-1,0),(1,0)}, and L = {9,(0,1)}, then a local transition function
may look like this: ¢ = x_1 o&zq V z1,0&20,1.

If « € Z¥, v is a solid angle with vertex at the origin, then we denote by
v(a) the solid angle obtained by translation of the angle v to the point a.

If & € ZF is a cell of a cellular automaton with locators o, then the set
V(a) = {a,a+ aq,...,a+ ap_1} is called the neighborhood of the cell a,
and elements of the set L(a) = {vi(«a),...,vm(am)} are called locators of
the cell a.

A state of a cellular automaton with locators o is a pair (e, f), where e is
an arbitrary function from the set ZF to the set E,, called broadcast state, f

18

is an arbitrary function from the set Z* to the set E,, and called distribution
of states of the cellular automaton with locators o. Such a function can be
interpreted as a certain mosaic arising in the k-dimensional space as a result
of assigning a certain state from the set F, and some signal from the set
E, to each point with integer coordinates. The set of all possible states of a
cellular automaton with locators is denoted by .

If a € ZF and (e, f) is a state of a cellular automaton with locators o,
then the value e(a) is called the signal of the cell o, defined by the state (e, f),
and the value f(«) is the state of the cell ., determined by the state (e, f).
For each i € {1,...,m} the value

sifa)= Y e (1)

Bev;(a)NZk

we call the value of the locator v;, determined by the state (e, f). Here, the
semigroup operation + defined on Fj, is used to sum signals.

On the set ¥ we define the global transition function ® of a cellular
automaton with locators o, putting ®(e, f) = (¢/, f'), where (e, f), (¢/,) €
¥ and for any cell a € ZF the following identities hold

(@) = o(f(@), flatar),..., fla+an1),s1(a),...,sm(a)), (2)
e(a) =¢(f(a), fla+ar),..., fla+ap1),s1(a),...,sm(a)). (3)

A meaningful interpretation of the mapping & is that the signal of each
cell and the state of each cell “after the transition” is determined by the state
of the neighborhood of the cell and by the values of the locators “before the
transition” using the rules ¢) and ¢ in the same way for all cells.

By the behavior of a cellular automaton with locators o we call a sequence
(eo, fo), (€1, f1), (€2, f2), ... of states such that the equation (e;j4+1, fi+1) =
®(e;, f;) holds for all i« = 0,1,2,.... The state (e;, f;) is called the state of
the cellular automaton with locators o at the time i, and (eg, fo) is also called
the initial state of the cellular automaton with locators o.

A state of a cellular automaton is called a configuration if only a finite
number of cells are in a state other than 0 and the signals of all the cells are
zero. The set of configurations is denoted by Y.

If a certain state of a cellular automaton is specified, then cells that are
in a state other than 0 are called active.

Furher, we demonstrate several problems for cellular automata and show
how their solutions are significantly simplified in case of using cellular
automata with locators.

19

3. A firing squad problem

A firing squad problem was first proposed by J. Mayhill in 1957 and published
(with a solution) in 1968 by F. Moore [9].

In this problem, we consider a one-dimensional cellular automaton on .
The neighborhood pattern is V' = {—1,1}, i.e. each cell has two neighbors
left and right. The set of states have at least three states: 0 — quiescent state,
1 — soldier in initial state, 2 — fire. There is a restriction on the transition
function that a soldier in the initial state, having neighbors of such soldiers,
does not change the state, i.e. ¢(1,1,1) = 1. The initial configuration is a
continuous segment of r cells in state 1 (soldiers), and all other cells are in
quiescent state 0. It is necessary that at some point in time all active cells
switch to the state 2 at the same time (fired).

The standard solution to the above problem contains two waves of states
propagating through a number of soldiers, one of which moves three times
faster than the other one. The faster wave is reflected from the far edge of the
row and meets the slower one in the center. After that, two waves are divided
into four waves, moving in different directions from the center. The process
continues, each time doubling the number of waves, until the length of the
segments of the row becomes equal to 1. At this moment, all the soldiers
shoot. This solution requires 3r time units for r soldiers.

The cellular automaton with the locators og, which solves the firing
squad problem, has the following form og = (}, E3,V = {—1,1}, F,V,L =
{Q}, ¢,), where V is the disjunction taken as the determining operation on
broadcasting function v takes the value 1 only for the leftmost soldier in the
initial state, i.e. ¥ (zg,z_1, 21, 20) = ToT_12q, the local transition function
takes the value 2 only if the cell is in state 1 and the broadcasting signal is
1, and does not change state in all other cases, i.e.

o(xo,r-1,71,2q) = max(2- ((xg = D)&(zq = 1) V (29 = 2)),1 - (xg = 1)).

Hence, the firing squad problem can be solved in 2 clocks using three
states and two broadcasting signals.

Note that the described solution is fully consistent with the real-
life protocol used by the military: the commander (the leftmost soldier)
commands “fire” and the whole squad shoots.

4. Unidirectional movement of a point on the ray

The problem of unidirectional motion of a point on the ray, proposed and
solved in the paper [10] by E.E. Titova, is as follows.

The set of cells is a set of natural numbers, i.e. ray is directed to the right.
Each cell has two neighbors, one on the left and one on the right of itself. Some

20

of the states of the cells are called labels and considered black, other states
are considered white. Configurations are considered to be correct when there
is exactly one black cell (called a point) on the ray. The cell corresponding to
the number 1 (the leftmost cell) does not have a neighbor on the left of itself,
and we will consider the variable corresponding to the state of the neighbor
on the left of this cell as a control input, to which we can apply any control
actions. The described set of cells with one control input will be called the
screen.

Formally, the screen is the cellular automaton S = (,E,,V =
{-1,1}, ¢, M), where n is the number of states of the cell of the cellular
automaton, and ¢ : E3 — E, is a local transition function, M is a set of
labels, M C E,, 0 ¢ M. If the cell is in a state of M, then informally we
believe that it is painted black, otherwise it is painted white. We call the
variable x_1 of the local transition function of the cell corresponding to the
number 1, (of the leftmost cell) the control input of the screen S.

Law of motion is an infinite sequence (superword) of zeros and ones. If
F = fi, f2, f3,... is the law of motion, then we denote by F(t) the t-th
element of the sequence, i.e. F(t) = f;.

We say that on the screen S the point moves according to the law F, if
the following conditions are satisfied:

1) at some point in time, a label appears in the leftmost cell of the screen
(before that there are no labels on the screen), this moment is called
the movement start;

2) changing the position of the label on the screen at the ¢-th moment from
the movement start corresponds to the t-th letter in the superword F,
namely, if F(t) = 0, then in (¢ + 1)-th moment the label remains in
the same cell where it was at the current moment, if F'(t) = 1, then in
(t + 1)-th moment the label moves one cell to the right, compared to
its current position;

3) at each moment of time after the movement start, there is exactly one
label on the screen.

A S screen will be called universal for the set of laws of motion F if for
any F' from F there is such a control sequence supplied to the control input
of the screen that provides a point movement by the law F' on the screen.

We denote by F* the set of such laws of motion F' that do not contain
more than s ones in a row.

The following theorems are proved in [10].

Theorem 1. For any screen S, there ezists a law of motion F € {0,1}°
such that it is impossible to realize the motion of a point according to the law
F on the screen S.

21

Theorem 2. There is a law of motion F' € {0,1}°°, the movement of which
cannot be realized on any screen S.

Theorem 3. There is a universal screen with 2s+ 2 states for the set of laws
of motion F?.

The question of describing the set of all realized laws of motion remains
open, although G.V. Kalachev and E.E. Titova [11] have significantly
advanced in this direction.

We present a cellular automaton with locators that solves the problem of
unidirectional motion of a point on the ray.

Consider the following cellular automaton with the locators o; =
(, B2, V. = {-1,1},E9,V,L = {Q},p,0,M = {1}), where V is the
disjunction taken as the determining operation on the semigroup of signals
Ey ={0,1}, the locator pattern consists of one full solid angle €, the set of
labels consists of one character 1, broadcasting function) is identically zero,
the local transition function takes the value 1 in only two cases: if the cell is
in state 1 and the broadcasting signal is 0, or if the cell on the left is in state
1 and the broadcasting signal is 1, i.e. ¢(xo, z_1, 21, 2q) = xo&Zq Vx_1& 2.

We assume that the variable xz_; of the local transition function of the
leftmost cell is the control input. In addition, we will consider that signals
from FE5 can be broadcasted as control actions.

It is clear that in order to start moving, you need to send 1 to the control
input, as well as send 1 to the air. As a result, the label appears on the screen
in the leftmost cell. Further, in order to realize the law of motion F, it is
necessary to send the value F(t) to the air at the time ¢.

Thus, using cellular automata with locators, any law of motion can be
realized, and the number of states of this automaton is 2, and the cardinaity
of the broadcasing alphabet is 2.

In fact, with the help of signals on the air we give commands to the point,
move it or stand.

5. Construction of the shortest path

The problem of constructing the shortest path for cellular automata is as
follows. In the initial configuration, there are only two cells in the active
state, which we will call the starting points. The shortest path is considered
to be built if, at some point in time, the configuration becomes stable, and the
active cells of this configuration form the shortest path between the starting
points.

An adaptation of the traditional way to solve this problem to cellular
automata is provided in [12]. Such adaptation involves the presence of three
stages:

22

1) A propagation of an expanding signal from one of the starting points.
When expanding, each cell remembers where the signal came from.
This will allow to carry out a reverse move later.

2) When the wave reaches the second starting point, a reverse movement
is carried out, leading to the first point, which gives the shortest path.

3) At the same time, a purification wave starts. This wave switches all
the cells except the path cells into the quiescent state. In order for this
wave to catch up with the expanding wave, the expanding wave from
the first stage must expand at a half speed, and the purification wave
must expand at a unit speed.

The work [12] gives a proof that the automaton proposed by the authors
has 14 states. This work does not estimate the time it takes to build the path,
but it is not difficult to see that the time to build the path is no less than
6n, where n is the Manhattan distance between the starting points. Here, 2n
clock cycles are used at the first stage, and 4n cycles are necessary for the
third stage. It is possible to speed up the process by launching an expanding
wave from both starting points, but it is clear that the path construction
time will be proportional to the distance between the starting points.

Now consider the solution to the problem by cellular automata with
locators.

Consider the following cellular automaton with locators

op = (EV = {(-10),(01),01,0),0,-1)}E,V,L =
{(-1,0),(0,1),(1,0),(0,—-1)},¢,v), where V — a disjunction taken
as a determining operation on a semigroup of signals Es = {0,1}, a

neighborhood pattern is “cross”, a pattern of locators consists of four rays
directed left, up, right and down, broadcasting function 1) takes the value 1
if the cell is in state 1 and one of four cases occurs: if all its neighbors are
in state 0; the cell does not have a neighbor from above in state 1 and the
upper locator receives signal 1; the cell does not have a left neighbor in state
1 and the left locator receives signal 1; the cell has no neighbor to the right
in state 1 and the right locator receives signal 1; i.e.

Y(0, T-1,0, 0,1, 1,0, L0,—1, 2—1,0, 20,1, 21,0, 20,—1) =
= 20(Z-1,0T0,1%1,0Z0,—1 V Z0,120,1 V T-1,02=1,0 V T1,021,0);

the local transition function takes on value 1 if the cell was in state 1, or if
signals from the air came to one of four pairs of locators at the same time:
top and right, top and left, top and bottom, left and right, i.e.

80(360,96—1,07560,1,331,0,900,—1,2—1,0720,1721,0720,—1) =
=20V 20,121,0 V 20,12-1,0 V 20,120,—1 V 2-1,0%1,0-

23

We show that the aforementioned cellular automaton with locators solves
the problem of constructing the shortest path.

In the initial (zero) clock cycle on the plane, there are only two active
cells, which we call the initial ones.

We consider various cases of the location of the initial cells.

Case 1. The initial cells are located on the same horizontal. We denote
by A the left initial cell, and by B the right one.

Case 1.1. If the initial cells are adjacent, then this pair of cells makes up
the shortest path. It remains to note that the signals will not be broadcasted
on the air, therefore, new active cells will not appear, and, therefore, the
configuration will remain stable.

Case 1.2. If the initial cells are not adjacent, then the broadcasting
function of each of the initial cells will become equal to 1, since these cells
have no neighbors. Consequently, on step 1, a signal will be broadcast from
A and B cells, and for all cells between A and B cells, the left and right
locators will receive signals. Therefore, the local transition functions of these
cells will take the value 1. Therefore, on step 2, all cells between A and B will
go to state 1. The shortest path is constructed. Since all cells have neighbors,
the broadcasting function of all cells will take the value 0, and the resulting
configuration will remain stable.

Case 2. Initial cells are located on one vertical. This case is proved
similarly to the case 1.

Case 3. The initial cells are in general position. Let’s mentally draw
vertical and horizontal lines through the initial cells. As a result, we get
an imaginary rectangle with sides parallel to the coordinate axes, at the two
diagonal vertices of which the initial cells are located.

Case 3.1. One initial cell is located in the upper left corner of the rectangle
(we denote it by A), and the second initial cell is located in the lower right
corner (we denote it by B).

Since the initial cells have no neighbors, the broadcasting function of
these cells will take the value 1. Therefore, on step 1, a signal will go from
the cells A and B on the air. The cell located in the lower left corner
of the rectangle (denoted by C') will receive signals from the upper and
right locators. Therefore, its local transition function will take the value 1.
Therefore, at step 2, the cell C' will become active.

Case 8.1.1. The cell C is adjacent to both A and B. Therefore, the
shortest path is built. All cells have neighbors, therefore, signals will not
be broadcasted anymore, and the configuration will remain stable.

Case 3.1.2. The cell C is not adjacent to A, and is adjacent to B. Then
the broadcasting function of the cell C' will take the value 1. Therefore,
on step 3, signals from two cells will go on the air: A and C. This means
that all cells between A and C will receive signals to their upper and lower

24

locators. As a consequence, their local transition function will take the value
1. Hence, on step 4, all cells between A and C' will become active. Now all
cells have neighbors, therefore, signals will not be broadcasted anymore, and
the configuration will remain stable.

Case 3.1.8. The cell C is adjacent to A, and is not adjacent to B. This
case is proved similarly to the case 3.1.2.

Case 3.1.4. The cell C is adjacent to neither A nor B. Then the
broadcasting function of the cell C' will take the value 1. Thus, on step 3,
signals from three cells will go on the air: A, B and C. This means that all
cells between A and C will receive signals to their upper and lower locators,
and all cells between B and C will receive signals to their left and right
locators. Thereby, the local transition function of all these cells will take the
value 1. Then, on step 4, all cells between A and C and all cells between
B and C will become active. The shortest path will be built. All cells have
neighbors, with the result that signals will not be broadcasted anymore, and
the configuration will remain stable.

Case 3.2. One initial cell is located in the lower left corner of the
imaginary rectangle, and the second initial cell is located in the upper right
one. The proof is similar to the proof of the case 3.1.

Finally, we have shown that the proposed cellular automaton with
locators allows us to build the shortest path in no more than 4 clocks.
Moreover, it has only 2 states and 2 broadcasting signals.

Criicok aurepaTryphl

[1] Von Neumann J., Collected works, New York, 1961 — 1963.
[2] Von Neumann J., Theory of self-reproducing automata, London, 1966.

[3] Burks A. W., Essays on Cellular Automata, Urban, IL: University of Illinois
Press, 1970.

[4] Moore E. F., “Machine models of self-reproduction”, Proceedings pf Symposia
in Applied Mathematics, 14 (1962), 17-33.

[5] Kudryavtsev V. B., Podkolzin A. S., Bolotov A. A., Fundamentals of the theory
of homogeneous structures, Nauka, Moscow, 1990 (In Russian).

[6] Arrighi P., “An overview of Quantum Cellular Automata”, arXiv:1904.12956v2
[quant-ph] 6 Sep 2019, September 9, 2019, 1-23.

[7] Li W., “Phenomenology of Non-local Cellular Automata”, Stat. Phys.l, 68:5/6
(1992), 829-882.

[8] Kudryavtsev V. B., Gasanov E. E.; Podkolzin A. S., Theory of Intelligent
Systems: in 4 books. Book Four. Theory of Automata, Publishing Solutions,
Moscow, 2018 (In Russian).

[9] Moore F. R., Langdon G. G., “A generalized firing squad problem”, Information
and Control, 12:3 (March 1968), 212-220.

[10] Titova E. E., “Designing moving images by cellular automata”’, Intelligent
systems, 18:1 (2014), 153-180 (In Russian).

25

[11] Kalachev G. V., Titova E. E., “On the measure of the set of laws of motion
of a point realized by cellular automata”, Intelligent systems. Theory and
Applications, 22:3 (2018), 105-125 (In Russian).

[12] Hochberger C., Hoffmann R., “Solving routing problems with cellular au-
tomata”, Proceedings of the Second Conference on Cellular Automata for Re-
search and Industry, Octber 1996, 89-98.

26

The one-dimensional closest neighbor search
problem solution using the cellular
automata with locators !

D.I. Vasilev?

The paper considers applying the locator cellular automaton model
to the closest neighbour search problem. The locator cellular automaton
model assumes the possibility for each cell to translate a signal through
any distance using ether. It is proven in this paper that such possibility
allows to decrease the problem complexity from linear to logarithmic
(against the classic cellular automaton model).

Keywords: cellular automaton, homogeneous structures,the closest
neighbour search problem.

1. Introduction

Cellular automata (other names: self-reproducing automata and
homogeneous structures) are discrete mathematical models of a wide
class of real systems along with the processes taking place in them.

Theory of self-reproducing automaton was introduced by John von
Neumann|2, 1] to describe the processes self-reproduction in biology and
technology. His model was further developed and the term “Cellular
automaton” as it described below was used by A. Burks [3], E. Moore [4],
V. B. Kudryavtsev, A. S. Podkolzin, A. A. Bolotov [5] and other researchers.

Cellular automaton — is a mathematical object with discrete space and
time. Its every position in space represented by a single cell, and each moment
in time represented by discrete time step or generation. The state of each
spatial cell is determined by very simple rules of interaction. These rules
prescribe changes in the state of each cell in the next time step in response
to the current state of neighboring cells.

In the paper of Gasanov E.E. 9] the concept of a cellular automaton
with locators was introduced, which differs from the concept of a classic
cellular automaton in that it allows the transmission of information not only
between neighboring cells, but also at any distance, by means of transmitting
a signal to the ether. The paper considers the application of this model to
the one-dimensional closest neighbor search problem: a special point called

L Originally published in Intellektualnye Sistemy. Teoriya i prilogeniya (2020) 24,

No. 3, 99-119 (in Russian).

2 Vasilev Denis Igorevich — junior researcher, Lomonosov Moscow State University,
Faculty of Mechanics and Mathematics, Chair of Mathematical Theory of Intelligent
Systems, email: denis.vasilev.igor@gmail.com

27

"central"and some finite set of "target"cells are arbitrarily marked on Z!; the
problem is to understand which of the target points is closer to the central
one. The classic model of a cellular automaton solves this problem in linear
time (by the minimal distance between the central and the target points). In
this paper, it will be shown that the problem can be solved in logarithmic
time via the cellular automaton with locators model.

The author expresses gratitude to Professor E.E.Gasanov for setting the
problem and Ph.D. G.V.Kalachev for valuable comments and suggestions.

2. The problem description and results formulation.

In the paper of Gasanov E.E. [9] the concept of a cellular automaton with
locators was introduced. Here we will give this concept, narrowing it down
to the one-dimensional case.

By a solid angle in R¥ we mean the union of all the rays in the space R¥
emanating from a given point (vertex of an angle) and intersecting some
hypersurface in R¥. In the definition, we assume that a solid angle does not
contain its vertex. In particular, in this paper we consider two degenerate
cases: the full solid angle coinciding with R* without the vertex of the angle,
which we denote by 2, and solid angles equal to one ray. If a solid angle is a
ray, we denote it by a vector defining its direction.

A cellular automaton with locators is a 8-tuple

0 = (Zk7En7 ‘/7 Eqa +7L7 ¢7¢)

where ZF is the set of k-dimensional vectors with integer coordinates,
E, ={0,1,....n— 1}, V = (aq,...,ap_1) is an ordered set of pairwise
different nonzero vectors from Z*, E,={0,1,...,¢—1}, + is a commutative
semigroup operation defined on E,, L = (v1,...,1,) is an ordered set of
pairwise different solid angles in R¥ with a vertex at the origin, ¢ : E" XEJ" —
FE,, is a function depending on the variables zg,z1,...,Zh_1, 21, .., 2m such
that (0,...,0) =0, ¢ : Bl x EJ* — Eq is a function that depends on the
variables xg, x1,...,2Tp—1, 21, .. . , Zm. Here the variables xq, x1, ..., x,_1 take
values from F), and the variables z1,..., 2z, take values from E,. Elements
of the set ZF are called cells of the cellular automaton o; elements of the
set E,, are called cell states of the cellular automaton o; the set V is called
the neighborhood pattern of the cellular automaton o; elements of the set £,
are called broadcasting signals; the set L is called the locator pattern of the
cellular automaton o; the function ¢ is called the local transition function
of the automaton o; the function ¢ is called the broadcasting function of
the automaton o. The state 0 is interpreted as rest state and the condition
©(0,...,0) =0 is interpreted as a condition for maintaining the rest state.

28

Here we need to introduce an ordering of the neighborhood
pattern V' and the locator pattern L in order to establish a one-to-one
correspondence between vectors from V' and solid angles from L and variables
To, XT1y---3Th_1, 21,---,2m Of the local transition function ¢ and the
broadcasting function 1 respectively. We can make this correspondence
more explicit if we index the variables of the functions ¢ and ¢ by the
vectors and solid angles themselves, i.e. assume that the local transition
function ¢ and the broadcasting function ¢ depend on the variables zg,
Tags--sTap 1> Zvis- s 2uy, Where the index of the first variable is the zero
vector 0 = (0,...,0) € ZF. If we index the variables of the local transition
function and broadcasting function in this way, we can write them in any
order, and then we can define the neighborhood pattern and the locator
pattern simply as a set, not an ordered set.

In the rest of this section we use these conventions: consider the
neighborhood pattern as a set of vectors, and the locator pattern as a set
of solid angles and index the variables of the local transition function and
broadcasting function by the vectors from the neighborhood pattern and solid
angles from the locator pattern. At the same time, we often omit the outer
parentheses of the vectors in the indices. For example, if k =2, n =2, ¢ = 2,
V = {(-1,0),(1,0)}, and L = {9,(0,1)}, then a local transition function
may look like this: ¢ = x_1 o&zq V z1,0&20,1.

If « € ZF, v is a solid angle with vertex at the origin, then by v(a) we
denote the solid angle obtained by translation of the angle v to the point a.

If o« € ZF is a cell of a cellular automaton with locators o, then the
set V(o) ={a,a+ a1,...,a+ ap_1} is called the neighborhood of the cell
a, and elements of the set L(«) = {v1(a), ..., vm(am)} are called locators of
the cell a.

A state of a cellular automaton with locators o is a pair (e, f), where e
is an arbitrary function from the set ZF to the set E,, called broadcast state, f
is an arbitrary function from the set Z* to the set E,, and called distribution
of states of the cellular automaton with locators o. Such a function can be
interpreted as a certain mosaic arising in the k-dimensional space as a result
of assigning a certain state from the set E, and some signal from the set
E, to each point with integer coordinates. The set of all possible states of a
cellular automaton with locators is denoted by .

If a € ZF and (e, f) is a state of a cellular automaton with locators
o, then the value e(«) is called the signal of the cell «, defined by the state
(e, f), and the value f(«) is the state of the cell o, determined by the state
(e, f). For each i € {1,...,m} the value

si(a) = Z e(B) (1)

Bev;(a)NZk

29

we call the value of the locator v;, determined by the state (e, f). Here, in the
summation the semigroup operation + defined on Ej is used.

On the set X we define the global transition function ® of a cellular
automaton with locators o, putting ®(e, f) = (¢/, f'), where (e, f), (¢/,) €
> and for any cell a € ZF the following identities hold

flle) =o(f(a), flat o)., flatani) si(@),....sm(@)), (2)
() =v(f(e), fla+ ar),..., flat an1),s1(a), ... sm(a). (3)

A meaningful interpretation of the mapping ® is that the signal of each
cell and the state of each cell “after the transition” is determined by the state
of the neighborhood of the cell and by the values of the locators “before the
transition” using the rules 1) and ¢ in the same way for all cells.

By the behavior of a cellular automaton with locators o we call
a sequence (e, fo), (e1, f1), (e2, f2),... of states such that the equation
(eit1, fir1) = ®(e;, fi) holds for all i = 0,1,2,.... The state (e;, f;) is called
the state of the cellular automaton with locators o at the time i, and (eg, fo)
is also called the initial state of the cellular automaton with locators o.

Let’s formulate the closest neighbour search problem on the line. Let
the I be the initial state of a cellular automaton on Z' which satisfies the
following conditions:

1) Any cell is on one of {gs; gc,, *} states.
2) There is only one g¢, cell.
3) There is a finite and non-empty set of gg cells.

We will define that a cellular automaton state I’ is solution for the problem
I if I’ satisfies the following conditions:

1) The g¢, cell from I is in gop state in I'.

2) The cell which is the closest to the g¢, cell in [is in the qrg state if
it’s to the left and in qrp state if it is ti the right. If there are two
closest cell then the right cell must be in * state and the left one — in
qLE state.

3) The cells which lie between gop and qpg cells are in g state. The
cells which lie between gor and gqrg cells are in qrp state.

4) The rest cells are in * state.

We define that cellular automaton o solves the closest neighbour search
problem if it satisfies the following conditions:

30

1) If the initial state I of the cellular automaton is a closest neighbour
search problem then the automaton must end up in I’ state which is
solution for 1.

2) If the automaton takes state S which is solution for some closest
neighbour search problem this state must be kept for all the next tacts.

There is a cell automaton with locators o with 25 states and the ether
alphabet power 12 which solves the closest neighbour search problem for not
longer than logy s 4+ 7, where s is the distance between the g¢, cell and the
closest to it gg cell.

No cell automaton with locators o can solve the closest neighbour
search problem faster than log,,(£), where s is the distance between the g¢,
cell and the closest to it gg cell and M is the ether alphabet power.

3. Formal automaton description

Let’s consider cellular automaton o = (Z!, E,, V, Eq +,L,p,1), where V =
{(1),(-1)}, B, = {0,1}* x {0,1,2}, and L = (v_1,v1), where v_1,v; —
degenerate solid angles, corresponding to vectors (—1) and (1).

Let’s define the semigroup operation on E, as follows: (a1,b1,¢1) +
(ag, bz, c2) = (a1 + a2, maz(by, b)), mazx(ci,ca))

Let the state set E,, = {4503 4505 400 455 4C0; 415 RS
45545540y, 5 ACR, s QLF ARFS ALE; QRE 4OF 485 485 415 415 405 401 455 aRs *)

Let’s define state * as the rest state. The automaton is designed in a
way that only a limited set of cells will be in a non-rest state on each tact.
Considering that operation + has the property (0,0,0) + (0,0,0) = (0,0,0),
we can conclude that any locator’s value is calculated from a limited set of
non-zero terms, so it is defined correctly.

Let’s describe ¢ and v functions for each automaton state:

qlf and q,lj, k € 0;1 are the key autmaton states. If there are some
amount of q{: consecutive cells then on the next tact every second q{: cell will
go to the qg state and the rest qlL cells will keep their state. It will be proven
later that such behavior allows to translate a segment length bit by bit.

L 03
Uenss y if z; =0

v_1
L
O(ar,4-1,q1, 2015 20y) = qrr, if Z,:jl =1 J (4)

% in other cases

w(QIga q4-1,41, ZV71721/1) = (k A z;}_la kA Zi_lao)a (5)

31

qzz;/\zll,ly if 72371 =0
w(q57Q—17QI72V717'ZV1) == qRF, lf Z,:j_l =2) (6>

* in other cases

'(Z)l(qqufly(IbZV_pzm) :(k:/\zil,k:/\zil,()). (7)

gc, is the initial central cell state. The cell in this state will translate
(0,0, 1) signal for other cells to determine if they are on the left or on the
right side.

SD(quqfl’qlazl/fpzlq) = Q1cv (8)

w(QC’oaquQIyZanZVl) = (07()’ 1)' (9)

gs is the initial target cells state. The cell in this state will wait for a
special signal to change it’s state to the left or right version.

q;, if 25 =1
@(qs7q_17QI7zV717zV1) = q}k%, if 2371 =1 y (10)
qs in other cases

(0,0,1) if 23 =1
(0,1,0) in other cases

w(QS7Q—17Q17ZV_172V1) - { (11)

* is the initial state of internal cells (cells which are not central or
target). If x-cell is part of the problem (i.e. it lies between the central cell
and the side-closest target cell) it will wait for a special signal to change it’s
state on the left or right version. Otherwise such cell will keep calm as a rest
cell.

qf, if zl?jl = 1,23_1 =1
@(*aqfl»Qqu,l,Zul) = (Jf, if 231 == 1723_1 =1) (12)

* in other cases

¢(*,Q—1,Q1,Zu_1,zu1) = (0,0,0). (13)

States ¢~ and ¢ are designed for two purposes. First of all, they will
provide right ether structure right before the main part of the algorithm will
begin. Secondly, internal cells in this state are waiting for a special signal to
determine if they lie between the side-closest and the central cell. If they are
not, they go to the rest state.

32

xif 23 =1
SO(Q£;Q—1,Q1,Z,,_1,2VI) — L v
gy in other cases

(0,0,0) if 25 =1
(0,1,1) in other cases

w<Q£7 q-1,d1, zuflazlll) = {

xif 22 =1
@(qgaqflachazl/_lazlll) = { R : o) (16)
gi" in other cases

. 2 _
(0,0,0)if 25 =1 ' (17)
(0,1,1) in other cases

Vgl g1, q1,20 4, 20,) = {

q; and gy are special target cells states. A cell in this state will wait
for a special signal to determine if it is the side-closest target cell. If it is not,
the cell go to the rest state.

*if 23 =1
(AL, 9-1,915 201 21y) = e (18)
qr, in other cases
"/)(Q»{laqfla(hazll_lazlﬂ) = (03030)7 (19)
. xif 22 =1
SO(quqflaqlazllfpzlq) = { . v 3 (20)
qr in other cases
(gl a1, 01,20y, 2,) = (0,0,0). (21)

4G Uocs 45 are working central cell states. The central cell compares
lengths of the left and the right segments. Automaton works in a way that
those lengths binary notation come to the central cell as ether signals: from
the lowest bit to the highest. The central cell can change it’s status depending
on the current bit pair: qgc — if current left bit is greater than the right one,
a5 — if it is less. If the left bit is equal to the right one, the central cell
state inherits from the previous tact. State g; occurs in the beginning and
may stay until the first non-equal bit pair.

X 2 2 1 1
qco, if zp =Lz =12, =2z,

< WGes if 23_1 = 1,231 = 1,2,3_1 > zil
QD(qCCv qd-1,491,2v_q, Zul) = < . 2 2 1 1
QGSes if 2z, =1z, =1z, <z,

gcr in other cases

33

(0,0,0), if 22 =1,22 =1
(0,0,1), if (z2 =0V zZ =0)A
N(z2 > 22V (22, = 25 NaGe 7 46e)

(0,0,2) in other cases

w(qCUQ—ly q1, ZV7172V1) =

(23)
qr, and qg are side-closest target cells states. They just mark the end
of the segment and go to their final state when hear a special ether signal.

qLEF, if Zgl =1
O(qL, G115 2oy, 2y) = 4 %, if 25 =2 ; (24)
qr, in other cases

@Z}(QL’qfla(thV—uzl/l) = (anao)v (25)

qre, if Zz%,l =2
C(qR, 41,41, 20y, 20y) = %, if 25 =1 : (26)
qr in other cases

1#(611%76]—1,(11721/,1,21/1) = (07070) (27)

q2C state is designed to for the central cell to looks for a special signal
from each side so it could find out if there is at least one target cell at each
side. If not, the problem is much easier and can be resolved in a constant
time.

qcy, ; if Zl%l =0
‘P(QQC,(I—LQLZV_UZW) - chl’ if 2571 =0 s (28)
q¢¢, in other cases

¢(qgaQ—1aQ17Zu_17Zu1) = (07070) (29)

qlc is a 1-tact sleep state. The central cell in this state don’t send
anything in the ether.

90(q107Q—1')QI72V7172V1) =d4qcy, (30)

w(qlcvq—hqlazl/—l?zl/l) = (07070)' (31)

qcy, and qcy, are states which occur when the problem is trivial in a
way that all the target cells are located at the same side of the central cell.

34

(P<QCL17Q—17Q1;ZV,1;ZV1) = dqcCF, (32)

¢(qoLlaQ—17QIan71aZV1> = (0707 1)7 (33)
Qp(qCRlaq*b(h’zl/fuzl/l) =dqcr, (34)
w(QCRlaqflaqlvzllfpzlq) = (07072) (35)

1 and ¢ functions below are function for the finish states. Those state
do not change or send anything to the ether.

O(qLr; 4-1, 91, 2v_y» 20y) = QLF, (36)
V(qLFs 4-1,q1, 2v_y, 20,) = (0,0,0), (37)
©(qRF; G-1,491, 2v_1+ 201) = qRF, (38)
Y(qrRF, 41,915 2v_1, 2y) = (0,0,0), (39)
O(qLEs 4-1, 91, 20 1> 20y) = QLE, (40)
V(e 4-1, 41, 204, 2,) = (0,0,0), (41)
©(qRE,4-1, 415 2v_1» %11) = QRE, (42)
Y(qrE; 4-1,915 Z2v_1> 201) = (0,0,0), (43)
©(qCF, 4-1, 915 Zv_y s 20n) = 4CF (44)
Y(qor, 4-1,q1, 20_y, 20,) = (0,0,0). (45)

Let’s define left cells as cells with L character in the state name (and
correspondingly define right cells). Let Q1 = {q;* }, where X € {R, L}, k = 1,
Qo = {g;}, where X € {R,L},k = 0.

35

4. Automaton’s behavior.

Let’s describe automaton’s behavior on each algorithm phase. We also
will provide a simple example for better understanding. We will describe
automaton states as follows:

-+

2l
(=)

193)

Q
=]
%)

&)

O OO OO0 o oK
O OO0 O OO OooO*

= OO OO0 o oK
O OO0 OO0 O O*
O OO0 O OO O oO*
O OO0 O OO O oO*
O OO0 OO0 O oOx
O OO0 O OO O oO*
O OO0 OO0 O O*
=] lolole] ol ie] el
O OO0 O OO OooO*

O OO O OO O O %
O OO0 O OO O oO*
O OO0 OO0 O O*
O OO0 OO0 OoO*
(=N =] felwlo] folieie]]

o
[e=]

Where Q = ¢1, g2, ..., ¢, — automaton cells states. We only consider
cells which lie between non-* cell in the initial automaton state. All gg and
qc, cells are also considered.

L' =1,1, ..., 1L — first components of the left ether sum.

I? = l%, l%, ..., 12 — second components of the left ether sum.

L3 =13,13,...,13 — third components of the left ether sum.

R' = r%, r%, ...,7L — first components of the right ether sum.
R? =72 r2 ... r2 — second components of the right ether sum.
R3 = ri”, r%, ...,7S — third components of the right ether sum.

Pl =l pd .l — the first component of the signal, being sent to
the ether

Y2 = 2 b2, ...,92 — the second component of the signal, being sent
to the ether

Y3 =3 43, ..., — the third component of the signal, being sent to
the ether

4.1. Phase 1: determine the orientation.

Let the initial automaton state satisfy the Theorem 1 conditions:

-+
Il
=)

©
©
Q
=]

©

&)

(=N =] =N ele] foliole]]
O OO O OO O O %
= OO OO0 o oK
O OO O OO O O *

O OO0 OO0 OOx

O OO0 O OO OoO*

O OO0 O OO O O*
O OO O OO O O *

O OO0 OO0 O oOx
O OO O OO0 OO
O OO O OO O O ¥
O OO OO0 O O *

[N ele] ol N} oo Ne] Y
O OO O OO O O %
O OO OO0 O O ¥
= OO OO0 o oK

o
o
o
o
=
o
o
o
o
o

There are only (0,0, 0) signals in the ether on the first tact. Transition
functions of ¢g¢ and * states are equal to gg and * respectively when

36

the input ether sums are (0,0,0). Broadcasting functions of these states
are equal to (0,1,0) and (0,0,0) respectively. The transition function
of the g¢, state is equal to qQC , and the broadcasting function takes the

value (0,0,1). Overall, only the central cell will change it’s state on the
first tact. Besides, the ether space will fill with central and target cells signals:

o+
w |

—_
~MQ

)
95

&)
= O Ol = OO0 o oK
O Ol = OO = O| %
O Ol = OO = O
O Ol = OO = O %
O Ol = OO = O %
O Ol = OO = O %
O Ol = OO = O %
O OOl = OO = O %
O Ol = OO = O %
[eNeNelleol el el S =lt:]
OO OO~ Ol - O %
O O OO = Ol = O %
O OO~ Ol = O %
OO OO~ O - O %
O OO = O = O %
= OO0 O O+~ O

<
w
o
—
o
o
o
o
o
o
o
o

The transition functions values of gg and * states depend on the side
from which signals (0,1,0) and (0,0, 1) came. gg cells could either go to the
qj state and translate a (0,0, 1) signal or go to the ¢ state and translate a
(0,1,0) signal. * cells can go to ¢ or ¢f states and always output a (0,0,0)
signal. qQC cell looks for a (0,1,0) signal from each side. If such a signal is
only present on one side, central cell goes to qcyp, Or qoy, state (depending
on the side on which (0, 1,0) signal occurs) and we don’t need to compare

segments from different sides. This is an easy case and the problem can be
resolved in a constant time at this point. In our case the signal is present on

both sides so the central cell goes to the qg state to sleep for 2 tacts and
wait before the other cells are ready to begin the length calculation:

t=2

Q a af q o o & b o & o F F F & & g
I 0 0 0 ©0 0 ©0 0 o0 0 ©0 0 0 0 0 0 0
2 o 0 0O O O O O O O0O O o0 O O 0 0 O
»» o 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Rr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
R 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 o0
R 1 1 o0 o0 o0 O 0 o0 0O O o0 O O 0 0 0
97 0 o0 o0 1 1 1 1 1 1 o0 1 1 1 1 1 o0
2 0 o o 1 1 1 1 1 1 o 1 1 1 1 1 0
4 0 0 0 O 0 0 0 0O 0 O O 0 0 0 0 0

This is how Phase 1 ends. To sum up, from all the initial qg cells we
only keep the two closest to the center. Those cells are now oriented (i.e. are
either in g7, or qr states); the * cells which lie between the central cell and
one of the two kept target cells will also go to the oriented state ¢~ or ¢f;
the central cell will go to the qlc state.

4.2. Phase 2: length comparison.

This is a complicated iterative phase.
We will call g7, and gr cells extreme, and cells which lie between
the central and an extreme cell — internal. Let’s define that this phase

37

ends when the central cell translate a signal ¢ € {(0,0,1);(0,0,2)}. The
transition functions are designed in a way that the central cell is always in
qgc,qgc, qéc state in Phase 2 and it can only go to another state when it
send one of {(0,0,1);(0,0,2)} signals. Finally, it’s easy to see that signals
{(0,0,1);(0,0,2)} are only sent when all the internal cells from some side
are in ¢ € Qo state.

Let’s consider the left side of the cellular automaton. We will enumerate
the cells from left to right and denote ¢*',i € {1,2,..s.},¢ > 0 as an i-th cell
state in the ¢-th tact. We assume that t = 0 — the beginning of Phase 2.

q"t € Q1 if and only if i(mod 2t) = 0.

ZHoxazameavcmeo. Let s prove this statement by induction:

At the ¢ = 0 moment all the cells are g € Q1 states, which is equivalent
to i(mod 2°) = 0.

Let’s prove the Lemma for ¢ = 1. From the transition functions of
the {qF;qF; qb; qf'} states we can see that ¢! € Q1 « ¢° € Q1 A

20 = (Lo, B) < 2%, = (1,a,8) (here and further o and 8 are
arbltrary elements of the {0;1} and {0;1;2} sets respectively). We know that
i—1
20 = Z Vgt g 1,q1,20 1, 20,) = Y. (1,1,0) = (i(mod 2),1,0), therefore

Jj=1 Jj=1

¢*t € Q1 < i(mod 2) = 0.

Let’s assume the Lemma is true for t =0,1,2, ..., k and prove it is true
for t = k + 1. From the transition functions of the {q¢¥; ¢%; ¢&; ¢} states we
can see that ¢"*T!1 € Q1 < ¢"* € Q1 A zf,’fl = (1, a, 8). The broadcasting
functions of the {qlL; q{%; qé; qé%} states are designed in a way that ¢)"F=1 =
(1,a,8) < ¢*F € Q1, therefore z5* = (> 1,, 3). Thus, by

j(mod 2k)=0,j<i,j>0
the induction assumption:

¢ e Q& ¢F e Qi AT, = (1L,a,B) < i(mod 2F) = 0 A
> 1 =1 ¢ i(mod 2¥) = 0 A (i(mod 2¥+1) > 2% v i(mod
j(mod 2k)=0,j<i,5>0
2k1) = 0) « i(mod 2¥1) =0 O

We can also prove such lemma for the right side because the transition
and broadcasting functions of the left and right cells only depend on left and
right ether signals respectively.

It follows from the Lemma that at the ¢ moment the central cell hear
the value > 1 = [5¢] (mod2) at the 1-st ether dimension, which

i(mod 2t)=0,i€[1;s]
is equal to (¢t 4+ 1)-th bit in s length binary notion. Thus, the central cell
can compare the values s; and sg bit by bit, from the lowest to the highest
position. The transition and broadcasting functions of the qgc, X e{=<
,>} states implement such length comparison algorithm: if left i-th bit is

38

greater than such bit from the right then the central cell goes to the qgc

state; if it is lower — to the qéc state; if they are equal, the state doesn’t

change. This algorithm continue working until one of the lengths translation

= 0). In this moment the central cell sends one of the

3_1 =0V zgl
signals (0,0,2); (0,0,1) depending on which side appeared to be shorter.

ends (z

Phase 2 process for the given example:

<
dcc

>
dcc

>
dcc

39

4.3. Phase 3: finalize.

This is a very straight forward phase. It begins after the central cell send on
of the signals {(0,0,1),(0,0,2)} during Phase 2. Let’s assume that the left
side were longer and it was the (0,0, 2) signal:
t=6
Q *

~~

S
St
St
St
St
St
.
8\/
5
5
5
e
© 5
o]

Ll
L2
I3

Rl
R2

[} e] fe i) Kool e an]
O OO OO0 O O *
[=NeNo] oloNo] oo o])
[l e] fe el e] fo el i)
O OO OO0 OO
O OO OO0 O oK
[N elo] foloNe] oo Nl
[Nl ool joNo Nl
DOOOOODOOQ
N O OO O OO O oK
O OO0 O o0 0o
[Nl ool oo i)
[Nl ool oo Ne] i)
[=NeNo] oloNo] oo o]l
[=NeNo] oloNo] oo Na] i)
[eNeNo] ool oo No))

P30 0 0 0 0

[e=]

This signal will take place in the ether in the next tact:
t=7
Q *

S
-
St
St
SIS
SIS
SIS
Y
ey
ey
ey
ey
2y

Ll
L2
I3

Rl
R2
R3

wl
,¢J2
3

O OIN O OO O Of %
O Ol O OO O O
O OIN O OO O O
O OIN O OO © O
O OIN O OO O O
O OIN O OO O O
O Ol O OO0 OO

qcF
0
0
0
0
0
0
0
0

O O OoONO OO0 O
O O OIN O OO O O
OOOOO[\')OO§
O OO0 OoONO O
O O OO OO O O
O OO O Ol O O
O OO O Ol O O
O OO O OIN O O

0 0 0 0 0 0 0 0 0 0 0 0

When left cells hear this signal they go to the x state. The right target cell
goes to the qrp state and the right internal cells — to the grp state:

il
oo

Q

Ll
L2
L3
Rl
R2
R3

Q
=
=y
=

9dRF 9dRF 4dRF 4dRF
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

O OO0 OO0 OO *
O O OO0 OO0 OO
O O OO0 OO oo
O OO0 OO0 OO *
O OO0 OO0 oo
O OO0 OO0 O O*
O OO0 OO0 oo
OO OO0 OO OO *
[eNeolollooNelloNoNelR S
[eNele] ool elolol
O O OO0 OO0 o oK
O O OO0 OO0 o oK

5. Complete calculation process for the given
example

For clarity we write the whole process for the given example below:

40

qs

qs

as

qs

<
dcc

41

>
dcc

>
dcc

4dRF 4dRF 4dRF 4dRF 4dRF 4dRE

qcF

Let’s calculate the time T need for o to work out. From the previous section:

6. Automaton runtime

(46)

T+ 15 +Ts.

T —

where T} is duration of corresponding phase. It’s easy to see that T7 =

2. It follows from the Lemma 2 that if Phase 2 runtime is ¢ then

37 T3
t=minr

[logs(s + 0.5)], where s = min(sy, sg). Because we start time ¢

2T >s
from 0 in Lemma 1, the overall runtime of Phase 2 will be:

42

Ty = [logy(s + 0.5)] + 1 < logy(s) + 2.

Therefore,
T <logy(s) + 7.
References

[1] Von Neumann J., Theory of self-reproducing automata, London, 1966.

[2] Neumann J., von, Collected works, New York, 1961 — 1963.

[3] Burks A., Essays on Cellular Automata, University of Illinois Press, 1971.

[4] Moore E. F., “Machine models of self-reproduction”, Proceedings pf Symposia
in Applied Mathematics, 14 (1962), 17-33.

[5] Kudryavtsev V. B., Podkolzin A. S., Bolotov A. A., Fundamentals of the theory
of homogeneous structures, Nauka, Moscow, 1990 (In Russian).

[6] Kudryavtsev V. B., Gasanov E. E., Podkolzin A. S., Theory of Intelligent
Systems: in 4 books. Book Four. Theory of Automata, Publishing Solutions,
Moscow, 2018 (In Russian).

[7] Titova E. E., “Designing moving images by cellular automata’, Intelligent
systems, 18:1 (2014), 153-180 (In Russian).

[8] Kalachev G. V., Titova E. E., “On the measure of the set of laws of motion
of a point realized by cellular automata”, Intelligent systems. Theory and
Applications, 22:3 (2018), 105-125 (In Russian).

[9] Gasanov E. E., “Cellular automata with locators”, Intelligent systems. Theory

and Applications, 20:2 (2020), 121-133 (In Russian).

43

44

Remarks on the Definition of Cellular
Automaton with Locators !

Kalachev G. V.2

In [1], a cellular automaton with locators is defined. In this paper
we indicate some inaccuracies and issues of this definition and clarify
it to get rid of these issues. We also give examples of cellular automata
classes with locators that have good properties in a certain sense.

Keywords: cellular automata, homogeneous structures.

1. Introduction

The concept of a cellular automaton (CA) with locators was introduced
in [1]. CA with locators is defined by a 8-tuple (Z",Q,V,E,+,L,p,).
CA with locators in comparison with a conventional CA (Z",Q,V,)
contains additional structure where different elementary automata (cells)
can broadcast signals from the set of broadcasting signals E computed by
the broadcasting function 1. The signals are summed with the commutative
semigroup operation +. Locators of each cell receive the sum of signals
from the directions specified by the solid angles from the set L. CA
with locators can be considered as a mathematical model of a device
where there are both local interactions between adjacent cells and non-
local interactions through broadcasting, which can be implemented using
some kind of substrate that sums the signals from the cells due to some
physical principle. Such devices can potentially solve some problems in a more
natural way than conventional cellular automata, where sometimes we need
to develop complicated algorithms, in particular when we need to transmit
control signals.

2. Definition of a cellular automaton with locators
according to Gasanov

Let us recall the definition of a cellular automaton with locators introduced
by E. E. Gasanov in [1].

By a solid angle in R¥ we mean the union of all the rays in the space R¥
emanating from a given point (vertex of an angle) and intersecting some

! Originally published in Intellektualnye Sistemy. Teoriya i prilogeniya (2020) 24, No.
4, 47-56 (in Russian).

?Kalachev Gleb Vyacheslavovich — Candidate of Physical and Mathematical Sciences,
Junior Researcher, Lomonosov Moscow State University, Faculty of Mechanics and
Mathematics, Problems of Theorecical Cybernetics Lab.

45

hypersurface in R*. In the definition, we assume that a solid angle does not
contain its vertex. In particular, in this paper we consider two degenerate
cases: the full solid angle coinciding with R* without the vertex of the angle,
which we denote by €2, and solid angles equal to one ray. If a solid angle is a
ray, we denote it by a vector defining its direction.

A cellular automaton with locators is a 8-tuple

o = (Zk, En; ‘/7 Eqv +7L) QD,ip)

where ZF is the set of k-dimensional vectors with integer coordinates,
E, ={0,1,...,n =1}, V = (au,...,ap_1) is an ordered set of pairwise
different nonzero vectors from Z*, E,={0,1,...,g—1}, + is a commutative
semigroup operation defined on Ey, L = (vi,...,Vy) is an ordered set of
pairwise different solid angles in R with a vertex at the origin, ¢ : E" XEJ" —
FE, is a function depending on the variables xg, x1,...,Zp_1, 21,-- -, Zm such
that ©(0,...,0) =0, ¢ : B x EJ" — E, is a function that depends on the
variables xg, 1, ...,Tp_1, 21, - - -, Zm. Here the variables xg, z1,...,x,_1 take
values from F, and the variables 21, ..., 2, take values from F,. Elements
of the set ZF are called cells of the cellular automaton o; elements of the
set E,, are called cell states of the cellular automaton o; the set V is called
the neighborhood pattern of the cellular automaton o; elements of the set E,
are called broadcasting signals; the set L is called the locator pattern of the
cellular automaton o; the function ¢ is called the local transition function
of the automaton o; the function v is called the broadcasting function of
the automaton o. The state 0 is interpreted as rest state and the condition
©(0,...,0) =0 is interpreted as a condition for maintaining the rest state.

Here we need to introduce an ordering of the neighborhood pattern V'
and the locator pattern L in order to establish a one-to-one correspondence
between vectors from V and solid angles from L and variables zg,
T1,.-.,Th_1, Z1,---,2m Of the local transition function ¢ and the
broadcasting function 1 respectively. We can make this correspondence
more explicit if we index the variables of the functions ¢ and ¢ by the
vectors and solid angles themselves, i.e. assume that the local transition
function ¢ and the broadcasting function ¢ depend on the variables zg,
Tags- > Tap_1s Zury- -« s 2um, Where the index of the first variable is the zero
vector 0 = (0,...,0) € ZF. If we index the variables of the local transition
function and broadcasting function in this way, we can write them in any
order, and then we can define the neighborhood pattern and the locator
pattern simply as a set, not an ordered set.

In the rest of this section we use these conventions: consider the
neighborhood pattern as a set of vectors, and the locator pattern as a set
of solid angles and index the variables of the local transition function and
broadcasting function by the vectors from the neighborhood pattern and solid

46

angles from the locator pattern. At the same time, we often omit the outer
parentheses of the vectors in the indices. For example, if k =2, n =2, ¢ = 2,
V ={(-1,0),(1,0)}, and L = {€,(0,1)}, then a local transition function
may look like this: ¢ = .1‘_170&25’2 V «'El,O&ZO,l-

If € ZF, v is a solid angle with vertex at the origin, then by v(a) we
denote the solid angle obtained by translation of the angle v to the point a.

If « € ZF is a cell of a cellular automaton with locators o, then the set
V(a) = {aya+ aq,...,a+ ap—1} is called the neighborhood of the cell a,
and elements of the set L(a) = {v1(«a),...,vm(am)} are called locators of
the cell a.

A state of a cellular automaton with locators o is a pair (e, f), where e is
an arbitrary function from the set ZF to the set E,, called broadcast state, f
is an arbitrary function from the set Z* to the set E, and called distribution
of states of the cellular automaton with locators o. Such a function can be
interpreted as a certain mosaic arising in the k-dimensional space as a result
of assigning a certain state from the set E, and some signal from the set
E, to each point with integer coordinates. The set of all possible states of a
cellular automaton with locators is denoted by .

If « € ZF and (e, f) is a state of a cellular automaton with locators o,
then the value e(a) is called the signal of the cell o, defined by the state (e, f),
and the value f(«) is the state of the cell o, determined by the state (e, f).
For each i € {1,...,m} the value

si(a) = Z e(B) (1)

Bev;(a)NZk

we call the value of the locator v;, determined by the state (e, f). Here, in the
summation the semigroup operation + defined on E; is used.

On the set ¥ we define the global transition function ® of a cellular
automaton with locators o, putting @ (e, f) = (€¢/, f'), where (e, f), (¢/, f') €
> and for any cell a € ZF the following identities hold

f/(a) - gO(f(Od), f(a + al)? B f(a + ahfl)ﬂ Sl(a)v s 73m(a))7 (2)

e (a) = ¢(fla), flatar),..., fla+ap-1),s1(a), ..., sm(a). (3)

A meaningful interpretation of the mapping @ is that the signal of each
cell and the state of each cell “after the transition” is determined by the state
of the neighborhood of the cell and by the values of the locators “before the
transition” using the rules ¥ and ¢ in the same way for all cells.

By the behavior of a cellular automaton with locators o we call a sequence
(eo, fo), (e1, f1), (e2, f2), ... of states such that the equation (e;11, fiy1) =
(e, fi) holds for all i« = 0,1,2,.... The state (e;, f;) is called the state of

47

the cellular automaton with locators o at the time i, and (eg, fo) is also called
the initial state of the cellular automaton with locators o.

A state of a cellular automaton is called a configuration if only a finite
number of cells is in a state other than 0 and the signals of all cells are zero.
The set of configurations is denoted by '.

If a certain state of a cellular automaton is specified, then cells that are
in a state other than 0 are called active.

3. Corrections for the definition

3.1. Restriction on solid angles

According to the definition in Section 2, a solid angle is a union of rays
intersecting some hypersurface. However, even in the two-dimensional case,
an angle is defined by a real number which can be used to encode an infinite
amount of information. For the two-dimensional case, we propose to restrict
the set of solid angles to the set of angles bounded by rays going through
points with rational coefficients.

For the multidimensional case, there is even more freedom of choice of a
solid angle. In this case, we propose to introduce the following restriction:
the boundary of a solid angle should consist of hyperplanes spanned by
points with integer coordinates. Note that degenerate solid angles completely
contained in a subspace of a lower dimension are also allowed. Boundary of
such a degenerate angle should consist of parts of hyperplanes specified by
linear equations with integer coefficients.

3.2. Restrictions on the semigroup and the broadcasting
function

The definition of cellular automaton requires the existence of a distinguished
zero state which is preserved by the transition function. It is natural to
add a similar requirement for the broadcasting alphabet. Formally, in [1]
the set F always has a form {0, ...,¢ — 1} and contains 0, however, there is
no requirement that 0 + x = 0. We propose not to require that F has the
form {0,...,¢ — 1} but could contain elements of arbitrary type (apart from
numbers, it is often convenient to use pairs or sets of numbers), but require
that the semigroup (F,+) is a monoid, i.e. there exists a neutral element
0€ Fsuchthat 0+x =z forall x € F.

In [1] there is a restriction on the transition function ¢(0,0) = 0. It is
natural to add a similar restriction on the broadcasting function:

1/}(071/) =0,

48

i.e. an inactive cell that doesn’t have active neighbors cannot broadcast
nonzero signals.

3.3. Partial definiteness of the global transition function

In equation (1) the value of locator s;(«) is defined as a sum of the infinite
number of terms by the integer points of the solid angle where a semigroup
operation is used as an addition. An infinite sum is understood here in the
usual sense (as the limit of partial sums) with the clarification that a discrete
topology is introduced on the set E. In this case, for the series to converge, it
is necessary that starting from some moment, the partial sums are equal to a
constant, which is the sum of the series. This sum can be undefined if the sum
involves an infinite number of nonzero terms. In the general case, the value of
the locator is a partially defined function. Hence the global transition function
of the CA with locators is also partially defined. However, even here a proof
of correctness is required, namely, we need to prove that the convergence of
the series (1) and the value of the sum does not depend on the order of terms
(in the case of numerical series, this is true only for absolutely convergent
series).

Proposition 1. Let (E,+) be a commutative semigroup with discrete
topology. Let {xj} 1 be a sequence of elements E, {y]} 1 be its permutation
(y; = xi;). Then zf one of the series 2]21 x; and ijl y; converges, then
the second also converges and their sums coincide.

Hoxaszameavcmeo. The proof goes by way of contradiction. Without loss of
generality, assume that > 52 =1Yj = a, and the series Z 1 x;j either diverges
or its sum is not equal to a. This means that in the sequence of partial sums
(Xn)pZ1s Xn = 7, ; there is an infinite number of terms not equal to a.
Since the first series converges, there exists Ny such that for all n > Ny the
partial sum Y,, = Z?:l y; is equal to a. This means that a 4 y; = a for all
Jj > No.

We denote K, = {j | i; < n}. Take N > max;<n, i; such that Xy = b #
a. By construction 1,2, ..., Ng € K. Hence

b—XN—ZCCJ Zyk—Zy] Z yj:a+ Z Yy; = a.

keKn j>No,jeEKN j>No,jeK,

However b # a by our assumption, and we have a contradiction. Hence
> i1 Tn = a, as required. O

A state of a CA with locators is called finite if there is only a finite number
of active cells. Note that, taking into account the previous corrections, for

49

finite states the global function is defined since only active cells can broadcast
nonzero signals. However, consider such a CA with locators:

o= (2,{0,1},2,{0,1}, max, {2}, max, max),

where €2 corresponds to the locator that receives signals from all directions.
Suppose at the first moment there is exactly one cell is in state 1, and thus
the state is finite. Then this call broadcasts signal 1 and all the cells at the
second moment receive signal max(0, 1) = 1, hence they go to state 1 at the
third moment. Therefore, the state at the third moment is not finite. If we
take @ instead of max as a semigroup operation, then the functioning at the
first two moments will be the same, and at the third moment, the transition
function will not be defined.

4. Interesting classes of CA with locators

4.1. Classes solving the problem of partial definiteness of the
transition function

Taking into account the example from the Section 3.3, it is important to find
classes of CA with locators (Z,Q,V, E,+, L, p,1), where the definiteness of
the global transition function is guaranteed at any moment of time for some
class of initial conditions.

4.1.1. Idempotent monoid

Consider the case when the monoid (FE,+) is idempotent (is a semilattice),
that is, z +x = x for all x € E. In this case, the sum of an infinite number of
terms depends only on the set of terms present in the sum, and thus reduces
to a finite sum. Therefore, we have the following statement.

Proposition 2. If the monoid (E,+) is idempotent, then the global transition
function of a CA with locators o = (Z,Q,V,E,+,L,p,1) is defined
everywhere.

For example, if F is a linearly ordered set, then (F, max) is an idempotent
monoid with neutral element min F.

4.1.2. Finite CA with locators

We will say that the CA with locators o is finite if for any finite state S of
o the next state ®(5) is also finite.

50

Proposition 3 (Sufficient condition for the finiteness of a CA with locators).
Leto = (Z™,Q,V,E,+,{v1, ..., um}, p,¥) be a CA with locators satisfying the
following condition:

if (0, (e1, . em)) £ 0, then () vi=2.
1:6;7#0

Then o is finite.

In this statement it is important that we exclude vertex from the solid
angle, otherwise, the intersection of the solid angles v; would always contain
the origin.

Zloxazameavcmeo. Consider an arbitrary finite state s. Let A be a set of all
cells that are either active itself or have active neighbors, r be the maximum
Euclidean distance between elements of A.

Suppose the state ®(s) is not finite. In this case, there is an infinite set
M of cells that was not active and didn’t have active neighbors in the finite
state s and that became active in the state ®(s). For each cell z from M
consider the set of its active locators a(x) and choose such a set of locators
L’ C L that occurs infinitely many times among a(z) for x € M. Let M’ =
{xreM:a(x)=L"}.

Without loss of generality we assume that L' = vq,...,v;. From the
statement condition we have U;?:l vj=a.

Let S be the unit sphere in R", P = H§:1(Vij N S). Let us show that

d:=inf m i —pir|| >0, 4
z}gPlgj,éjl’ng Ip; —pyll (4)
where || - || is the Euclidean norm.

Note that each set v;; N S is compact, therefore, their product P is also
a compact set. Hence continuous function d(p) := max;-j ||p; — pj| reaches
its minimum on the compact set P. Suppose, this minimum is 0. Then there
exist p € P, pj € vj such that p; = py for all 1 < j,5° < k, that is,
P = ... =Dk € ﬂ;?:l v; = @, and we obtain a contradiction. Hence (4) is
satisfied.

Since the set M’ is infinite, there exists an element z € M’ located at a
distance D > r/d from the set A. Since the cell x has the locators vy, ..., vy
active, there exist elements yi,...,yx € A such that v; = y; —x € v;. Put

51

vj

Pi = Tl Then for any 1 < 4,7 < k the following holds:
2 2 2 _ (vi, vj)
1P = pilI° = lIpill” + llp; I° = 2(pi, pj) =2 = 27— <
[[oill[|v;
loill Mgl o (asvg) _ flve = wgll?
B 107 (0 | O 1 o7 T [1171
i —oil* _ My —will> _ 7>
ST T ;e ST

Thus, maxi<; <k ||[pi — pj|| < d. On the other hand, p; € v; NS, that is,
p = (p1,...,pr) € P which contradicts (4). Hence, our assumption is wrong,
and the state ®(s) is finite which completes the proof. O

4.2. Class with simple physical implementation

It is most natural to imagine the implementation of a CA with locators as
a chip. The broadcasting should be implemented by some device that “sums
up” an unlimited number of electrical signals. Such a device can consist of the
following elements: a conductor connected to all cell outputs to be summed;
an amplifier with the input connected to the conductor and output connected
to the locator inputs of all the cells. Thus, if one of the cells emits a signal,
this signal will be amplified and signal 1 will come to the locators of all cells.
If all the cells emit 0, then 0 will come to the locators of all cells as well. In
such a way we can implement the operation max from an unlimited number
of arguments taking values from the set {0,1}.

However, for a CA with locators, it is required to be able to calculate
max;.; a; for all i = 1,...,m. Note that

m
max a; = min< a-,l) = min(min< a-,2) —a-,l).

J#

it is also possible to implement operation My (ay,...,a,) = min(zz-n:lﬂ),
but more difficult than the operation max. For example, this can be done as
follows. Each input representing an operation argument equal to 1 outputs
a limited current to the wire connecting all the arguments and connected
to the neutral wire through a resistor. Depending on the number of inputs
equal to 1, there would be different voltages on the connecting conductor.
The conductor itself can be connected to two comparators, of which one
is triggered at voltage when at least one input is active, and the other is
triggered when at voltage when at least 2 inputs are active. Using the results
of these comparators, it is easy to obtain the value of the function M. Then,
through the common wire, we can connect the result s = Ms(ayq, ..., a,,) back

52

to all cells, and calculate min(s — a;, 1) in the i-th cell. Thus, the result in
i-th cell is max;; a; as required.

Using n copies of such a circuit, we can implement the Max operation on
the set {0,1}", which is a component-wise max operation:

Max((al,...,al), -, (a], ...,a™)) = (max(al,...,al),--- ,max(al,...,a™)).

Let show that arbitrary idempotent commutative monoid (F,+) where
|[E| = n < oo can be implemented using operation Max and ordinary
logic gates. To do this, we encode nonzero elements of E by the tuples
(1,0,...,0), (0,1,0,...,0), ..., (0,...,0,1) € {0,1}" 1, and we encode 0 € E
by the all-zero tuple. Let v be the described encoding function. For the set
E' ={e1,....,em} C E, we define 9(E’) = Maxecp v(e). In the tuple o(E’)
ones occur at positions corresponding to nonzero elements of the set E’.
Boolean operator F : 9(E') — v(}_,cp€) can be implemented by a logic
circuit. Using the idempotency of the monoid, for an arbitrary number of
arguments we have

U(Zei) - v(3 e) = F(o({e; | i € I}) = F(Maxv(e).

i€l ec{e;|iel}

So, we proved that for any finite idempotent monoid it is possible to
implement its semigroup operation from an unlimited number of elements
using a fixed logic circuit and several conductors connected to all cells whose
outputs are summed up.

This is exactly the class of monoids from Section 4.1.1, for which the
global transition function is defined everywhere. The situation with the
implementation of locators is worse. The conductor conducts in the same
way in all directions. If we use diodes that pass current only in one direction,
the depth of the circuit will immediately become linear in the number of
arguments, and in this case, it is no longer possible to say that the broadcast
is instant, thus the goal of using this model is lost. Therefore, only solid angles
coinciding with subspaces can be implemented by the described method. For
example, € is implemented if the outputs of all cells are connected with a
plate. We can make a layer with many wires going in the same direction.
Thus we can implement the locator {v, —v}, where v is the direction of the
wires in this layer.

Implementation of other locators requires the use of some other physical
principles that go beyond conventional circuit design.

References

[1] E.E. Gasanov, “Celluar automata with locators”, Intelligent systems. Theory
and applications, 24:2 (2020), 121-133.

53

54

The complexity of multilayer d-dimensional
circuits !

T.R. Sitdikov?, G.V. Kalachev?

In this paper we research a model of multilayer circuits with a single

logical layer. We consider A-separable graphs as a support for circuits.

We establish the Shannon function lower bound max (%, Qnif)fg;)‘)) for

this type of circuits where k is the number of layers. For d-dimensional
graphs, which are A-separable for A = d%dl, this gives the Shannon
function lower bound WZM. For multidimensional rectangular
circuits the proved lower bound asymptotically matches to the upper
bound.

Keywords: multilayer circuits, multidimensional circuits, Shannon
function asymptotics, circuit complexity, graph separators.

1. Introduction

The problem of designing circuits which compute Boolean functions and are
optimal or suboptimal in some sense appeared in the middle of the 20th
century due to the rapid development of computer technology. One of the
most intensive studied circuit models since the 1950s is Boolean circuits. The
number of gates (also size or complezity) is a natural complexity measure for
Boolean circuits. One may define the complexity of a Boolean function as the
minimal size of a Boolean circuit computing the function. Muller [22] showed
that the size of every Boolean function of n variables does not exceed O (%)
Lupanov [19] proved that the complexity of almost all Boolean functions over
the standard basis {V, &, -} is asymptotically equal to % Also Lupanov
obtained asymptotic bound for the complexity of Boolean functions with
respect to any finite basis.

In practice when designing Boolean circuits one must take into account
several factors including placement of gates, wiring and others. Models of
Boolean circuits considering these factors to some extent were studied in
some papers appeared since the 1960s. Korshunov [15] obtained size bounds
for Boolean circuits embedded in a 3-dimensional space with lower-bounded

! Originally published in Intellektualnye Sistemy. Teoriya i prilogeniya (2021) 25, No.
2, 131-154 (in Russian).

2Sitdikov Timur Rashidovich — Software Engineer, Google LLC, e-mail:
s7Tt1r9@gmail.com.

3Kalachev Gleb Vyacheslavovich — Candidate of Physical and Mathematical Sciences,
Junior Researcher, Lomonosov Moscow State University, Faculty of Mechanics and
Mathematics, Problems of Theorecical Cybernetics Lab, e-mail: gleb.kalachev@yandex.ru.

55

distances between gates, lower-bounded distances between wires and upper-
bounded lengths of wires. Kravtsov [17] considered Boolean circuits with
gates placed in cells of a rectangular grid and proved the order of 2" for
the Shannon function. McColl [20] obtained Shannon function lower bound
Q(2™) for planar circuits.

Models of cellular circuits similar to Kravtsov’s model were considered
in several more recent papers. Albrecht [1] showed that Shannon function
asymptotics for cellular circuits has a form c¢ - 2", where ¢ is a constant
dependent on a basis. Gribok [8] obtained Shannon function asymptotics
to 2™ for a special basis of cellular elements. The connection between size
and other complexity measures for cellular circuits also has been examined.
Cheremisin [4] showed that it is impossible to design a cellular circuit of
optimal size and activity simultaneously for a binary decoder. Kalachev [9, 10,
11, 12, 13| researched simultaneous minimization of a size, depth and activity
for cellular circuits. Efimov [5, 6] examined potential of three-dimensional
cellular circuits.

VLSI circuits are one of the closest to practice circuit models. In VLSI
circuits length of wires define the signal propagation time between gates.
VLSI circuits have been studied in a number of papers and books (Thompson
[27], Ullman [28]). Kramer and van Leeuwen [16] researched simultaneous
minimization of size (area) and period.

Another direction of research is studying connections between complexity
measures for different circuit models. Savage |23, 24| examined the connection
between VLSI circuits and planar circuits. Shkalikova [25] showed a relation
between the area of flat circuits and the volume of three-dimensional circuits.

The bounds of size proved for the mentioned above circuit models are
above Lupanov’s bound % for Boolean circuits size. One of the reasons for
this difference is that it’s impossible to conduct arbitrary number of wires
between gates under spatial constraints. If Boolean circuits are embedded into
a graph (e.g. rectangular grid), the number of wires that can be conducted
between fragments of the graph is naturally bounded by the size of edge
separator in the graph.

In this paper we examine the relation between Shannon function and
separability properties of the graph where Boolean circuits are embedded.
We consider embeddings with constraints from [26]:

e No more than 1 non-identity gate of a Boolean circuit can be embedded
into any vertex of a graph.

e No more than k wires of a Boolean circuit can be embedded into any
edge of a graph.

The main result of this paper is the lower bound of Shannon function for
graphs with a separator of size O(p), where p is the order of a graph and

56

0 < A < 1. We call such graphs as A-separable. We also show that the proved
lower bound is applicable to circuits embedded into a space with two or more
dimensions. Given the Shannon function upper bound for multidimensional
rectangular circuits [26], we obtain the Shannon function asymptotics for this
model of circuits.

2. Key definitions and results

2.1. Multilayer circuits

The model of multilayer circuits with a single logical layer was introduced in
[26]. Let us briefly summarize key definitions.

According to [3, p. 148], a Boolean circuit in a basis B is a labeled directed
acyclic graph. The labeling of vertices defines which vertices are inputs or
outputs. It also maps all non-input vertices to Boolean functions from the
basis B. Edges (wires) of a Boolean circuit are labeled by integers, and for
each vertex the labeling of its input edges defines the order of arguments for
the Boolean function mapped to the vertex.

A support is a nonempty graph with a finite or countable number of
vertices. In general a support may contain multiple edges or self-loops.

An embedding of a Boolean circuit S into a support T is a homomorphism
h:S—T.

A circuit with a support T is a pair (S, h) where S is a Boolean circuit and
h is an embedding of S into 1. We use the term “circuit” instead of “circuit
with a support” for brevity where it would not cause a misreading. A circuit
(S, h) computes a Boolean function f if a Boolean circuit S computes f.

In practical terms these definitions may be interpreted as follows. One
of the problems in VLSI design is an embedding of gates and wires into a
plate. The plate may be considered as a graph, i.e. as a support for Boolean
circuits.

Usually there are various constraints on embeddings in circuit design
problems. In this paper we consider the following constraints.

Constraint 1. Any vertex of a support may contain no more than 1 gate
computing non-identity Boolean function.

Constraint 2. Any edge of a support may contain no more than k wires of
a Boolean circuit.

These constraints may be interpreted as follows. A circuit consists of k
“layers” where only one layer is “logical” (i.e. may contain gates computing
non-identity Boolean functions). The remaining layers are used only for
wiring. Therefore we call the circuits under constraints 1-2 as multilayer
circusts.

57

Let us denote by M, kT the set of all k-layer circuits with a support 7'.

The complexity of a multilayer circuit is the number of support vertices
used in the corresponding embedding. If M is a set of multilayer circuits
and f is a Boolean function, one may naturally define the complexity of
the function f in the set M as the minimal complexity of a circuit from
M computing f. If no such a circuit exists in M, we may formally consider
infinity as the complexity of f. Let us denote the complexity of the function
f in the set M as L(M, f).

One may naturally define the Shannon function of the complexity of k-
layer circuits with the support 7"

L(My; ,n) = max LMy, f).

2.2. Supports

The properties of a support are crucial for embeddings, as under the same
constraints in general different supports admit different sets of embeddings.
In this paper we consider A-separable graphs as supports. We also consider
d-dimensional graphs as an important special case of A-separable graphs.

A class G of graphs is monotone if every subgraph of a graph in G also
belongs to G.

2.2.1. Classes of graphs G(q,0) and G(\,q,0)

Let ¢ € N and 0 > 1 be some constants. Let us define class of graphs G(q,)
as the set of all supports with the following properties:

e Degree of each vertex in 7' is bounded by gq.

e For any integer p the number of different non-isomorphic subgraphs of
T with p vertices does not exceed 6P.

The first property (bounding for vertex degree) is a natural limitation for
circuit design problems. The second property is met for several important
categories of graphs, including planar graphs [2| and d-dimensional graphs
defined below.

The formal definition of A-separability is considered in the section 3.
Substantively each subgraph of a A-separable support can be split into smaller
fragments by removing O(p*) vertices (edges), where p is the number of
vertices in the subgraph and 0 < A < 1.

We denote the subclass of A-separable supports from G(q, 0) as G(A, g, 0).

58

2.2.2. d-dimensional graphs

Let d > 2 be an integer. A support T is a d-dimensional graph, if there are
constants ¢, > 0,c. > 0 such that T can be embedded into d-dimensional
Euclidean space with pairwise distances between vertices no less than ¢, and
edge lengths no greater than c..

Remark 1. The constraints in the definition of d-dimensional graphs are
similar to the constraints in the definition of circuits with volumetric gates
from Korshunov’s paper [15].

Remark 2. We can always assume that one of the constants ¢, and c, is
equal to 1. Below we assume that ¢, = 1.

Remark 3. It’s clear that every finite support is a d-dimensional graph with
a great enough value of c¢.. Therefore the definition of d-dimensional graphs is
senseless for finite supports. However one may define a class of d-dimensional
graphs with a parameter c., where the constant c, is common for all graphs in
the class. It’s obvious that such a class is a monotone class of graphs. Below
we omit the constant c. and speak about a d-dimensional class of graphs in
cases when the value of ¢, is not important.

Example 1. The graph of a d-dimensional grid is a d-dimensional graph.
It’s sufficient to consider ¢, = 1.

Example 2. One can prove that the graph of an infinite binary tree is not
d-dimensional for any d. Indeed, the number of vertices at distance p from
the root depends on p exponentially, though the number of d-dimensional
balls with radii 1 that can be placed into a ball with radii c. - d is O(p?).

Embedding of Boolean circuits into d-dimensional grid was considered in
[26]. As in that paper, we use the term multidimensional rectangular circuits
for such circuits and use the notation M, ,? instead of M kZd.

In section 5 we prove that all d-dimensional supports belong to classes
G(\ q,0) for A = d%‘ll and some values of ¢ and 6.

2.3. Other designations and agreements

The expression log a always denotes a base two logarithm of a. We formally
assume that xlogax = 0 for z = 0.

We denote by B, ,, the set of Boolean functions with n inputs and m
outputs (n >0, m > 1).

The expression f(z) < g(x) corresponds to the inequality limg oo % <
1. Similarly we use the expression f(x) 2 g(x). We may use a complex
condition when passing to a limit, e. g. f(n, k) < g(n, k) as k — oo, logk < n.

59

2.4. Results
In this paper for every support T € G(, ¢, 0) we prove that

2" 2"(1 —
L(M,?,n)Zmax(,M) as k— oo, n — oo.
n 0

It is also proved that every d-dimensional support belongs to the class
G(A,q,0) for A = d%dl and some constants ¢ and 6. Therefore the following
lower bound holds for for d-dimensional supports:

T 2"
L(M;,n) 2 — as k— 00, n— o0.
(My,n) 2 min(n, dlog k) ’

An upper bound of Shannon function for multidimensional rectangular
circuits matching the lower bound above was proved in [26]. Thus we have the
asymptotics of Shannon function for multidimensional rectangular circuits:

2'I’L

L(ME ~———— k .
(Mg m) min(n, dlog k) as WMo mmr oo

2.5. The structure of the paper

In this paper all the proofs are divided into three sections.

Section 3 contains definitions related to graph separators. The main result
of the section is lemma 2. The point of the lemma is that A-separable graphs
supporting “good” (in some sense) partitioning into two parts also support
“good” partitioning into many parts.

Section 4 contains the proof of the lower bound for Shannon function
of the complexity for supports from classes G(\, ¢, 0). The key part of this
section is lemma 7.

Section 5 is devoted to the proof of the lower bound for Shannon function
for d-dimensional supports. The section also contains the asymptotics of
Shannon function for multidimensional rectangular circuits as a corollary.
Essentially it’s proved that every d-dimensional support belongs to a class
G(\ q,0) for A = d%.ll and some constants ¢ and 6.

3. Graph separators and their properties

3.1. Definitions and the simplest properties of separators

In this section we provide the definitions of edge and vertex separators in
graphs and prove some of the simplest properties of separators.

60

Edge separators. We define edge separators similarly to the definitions
of vertex separators from [18].

Definition 1. Let f: N — R be a function. A monotone class of graphs G
is edge f(p)-separable if there exist constants % <a<lp>0m?>2
such that any graph G € G with p vertices (p > m) can be split into two
subgraphs with no more than ap vertices each and no more than 8f(p) edges

between the subgraphs.

Remark 4. The constant m is technically important, since it allows not to
consider some corner cases. For example graph K; cannot be split into two
nonempty subgraphs in principle, thus we may always assume that m > 2.
In general m may be greater than 2.

Definition 2. Let f: N — R be a function. A support T is edge f(p)-
separable if the monotone class of all finite subgraphs of T is edge f(p)-
separable.

The interesting case is when f(p) is a slowly growing function. Essentially
this allows to use the divide-and-conquer technique for obtaining effective
algorithms and non-trivial lower bounds in proofs. In this paper we consider
the function p* with 0 < A < 1 as f(p). We also call edge p*-separable
supports and monotone classes of graphs as edge \-separable.

Vertex separators. The following definition of a vertex separator is a
modification of definition 2.1 from [21] applied to monotone classes of graphs.

Definition 3. Let f: N — R be a function. A monotone class of graphs G is
vertex f(p)-separable if there exist constants % <a<l1, B>0,m>2such
that for any graph G € G with p vertices (p > m) there exists a partition of
V(@) into three parts A, B, C satisfying the following conditions:

e There are no edges from A to B.
o |A|B| < ap.

o [C| < Bf(p).

It’s obvious that for any monotone class of graphs edge f(p)-separability
implies vertex f(p)-separability, as one may consider endpoints of an edge
separator as a vertex separator. The converse is not always true. For example,
the class of stars K7, and their subgraphs is vertex l-separable, but is not
edge 1-separable.

The following simple lemma shows that vertex f(p)-separability implies
edge f(p)-separability for monotone classes of graphs with bounded vertex
degree.

61

Lemma 1. Let G be a monotone class of vertex f(p)-separable graphs with the
parameters a, B, m where vertex degree of any graph is bounded by q. Then
G is edge f(p)-separable with parameters max (%, a), qf and max(m,2).

Proof. We’ll show how to obtain an edge separator from a vertex separator.

Let G € G, where |V(G)| = p > max(m,2). By the definition of vertex
separability V(G) can be divided into three sets A, B,C, where C is a
separator. Here |A|, |B| < ap, |C| < Bf(p).

Let us move vertices from C to A and B in a way to keep the sizes of
the resulting sets as close to each other as possible. We denote the resulting
sets by A" and B’. Considering the way of constructing A’ and B’, we obtain
1< |4, |B'| < max (3,a) - p.

Each edge connecting A’ and B’ is incident to at least one vertex from
C'. Since vertex degree is bounded by g, the total number of such edges does
not exceed ¢|C| < ¢Bf(p).

Since values max (%,a), gf and max(m,2) do not depend on a graph,
edge f(p)-separability of G is proved. O

Thereby when we define a class G(\, ¢,0) it does not matter whether we
use edge A-separability or vertex A-separability, as all graphs from the class
have vertex degree bounded by gq.

3.2. Partitioning of \-separable graphs

Informally the key result of this section is the following statement. Since a
A-separable graph can be split into two disconnected parts of comparable size
by removing a small number of edges, the graph can also be split into many
disconnected parts of bounded size by removing a small number of edges.

The following lemma is the modification of lemma 1 from |7] for planar
graphs.

Lemma 2. Let G be a monotone class of edge \-separable graphs with the
parameters o, 3 and m, where 0 < A <1, + <a <1, 3>0, m > 2. Then
for each r > m — 1 and for each graph G € G with p vertices there exists
partition of G into subgraphs such that

o The number of vertices in each subgraph does not exceed r.

o The total number of edges between subgraphs does not exceed %, where
0 is a constant common for all graphs of the class and for all values of
r.

We call the corresponding partition of the graph as r*-partition.

62

Proof. The proof of the lemma is similar to the proof of lemma 1 from [7].
We provide the detailed version of the proof for completeness.

Let r >m—1, G € G, |V(G)| = p. If p < r, then the trivial partition
containing a single graph G suffices.

Let p > r. By the definition of edge A-separability graph G can be
partitioned into two subgraphs A and B with no more than ap vertices each
and no more than Sp* mutually connecting edges. Since G is a monotone
class, A, B € G. Thus both A and B can be similarly partitioned into two
subgraphs. Let us recursively partition all the subgraphs until we have only
pieces with no more than r vertices.

Let us prove that the obtained partition is a r*-partition.

The constraint on the number of vertices in subgraphs (no more than r
vertices per subgraph) is satisfied by the algorithm of partitioning.

Let X be the total number of edges deleted during the algorithm. We
prove an upper bound for X. Let us split all subgraphs partitioned at any
step of the algorithm into sets G; depending on the size of a subgraph. We
include into G; subgraphs with a size from a half-open interval (r,ra~1.
Similarly we include into Gy subgraphs with a size from a half-open interval
(ra=t,ra=2], and so on. If t = [log,, 51, the last set Gy includes subgraphs
with a size from (ra~¢=D ra~.

Let 1 < 4 < t. Consider the set G;. Note that vertex sets of distinct
subgraphs from G; do not intersect, since the ratio of sizes of such subgraphs
is less than a. Therefore the total size of all subgraphs in G; does not exceed
p. Hence |G;| < 2-a'~1. At the same time the total number of edges deleted
when partitioning a graph from G; does not exceed B(r/a’)?.

By summing over all subgraphs from sets G; we obtain

to i1 A A

o por 15} pr

X < (7) <7 .
- B; r at/) —arMl—al7r)

This matches the constraint on the number of edges mutually connecting
subgraphs of a r*-partition. O

We use the following auxiliary notation below. Let M, S > 0. We denote
by K(M,S) the number of tuples (x1,...,x;) satisfying the condition

1<z <M,) z;,<8S (1)

If G is a monotone A-separable class of graphs with vertex degree bounded
by ¢, the properties of r*-partition may be stated as follows. Let p = {piti_,
be a tuple of sizes of r*-partition subgraphs, and let 5 = {si}!_; be a tuple

63

of numbers of edges connecting r*-partition subgraphs with the rest of the
graph. Then

§ A
pe K(rp), seK(qr, If) 2)

4. Lower bound for A-separable supports

In this section we prove the key result of this paper namely a theorem on the
lower bound for all supports from classes G(\, g, 0).
2" 2M(1 —))

L(Mg,n) z max (n, k)gk;) .

Note that the lower bound depends only on the separability function.
Parameters ¢ and 6 do not affect the lower bound.

Substantively the proof is obtained in the following way. We partition a
subgraph of a support into small fragments. Then we bound the number of
Boolean functions computable in the subgraph by the number of Boolean
functions computable in the fragments and the number of ways to conduct
wires between the fragments.

Since the proof is technically involved we prove several auxiliary lemmas
in a separate section 4.1. The proof of the main theorem is finished in section
4.2.

4.1. Auxiliary lemmas

The following lemma is an immediate corollary of a classic lemma [3].

Lemma 3 ([3|, p. 198). Let N(n,m, L) be the number of Boolean functions
with mo more than n inputs, no more than m outputs and the complexity not
greater than L. Then there exists a constant ¢ such that

N(n,m,L) < (¢(n+ L))n+m+L.

We use r*-partitioning of support subgraphs to obtain the lower bound.
Technical lemma 4 bounds the number of Boolean operators computable in
fragments of a r*-partition.

Let p and s be positive integers. We denote by Z(p,s) the number of
Boolean functions with no more than s inputs and outputs in total and the
complexity not greater than p.

Recall the notation K (M,S) introduced in section 3 for sets of tuples
satisfying conditions (1). When proving lemma 4 we use the following simple
property:

t
If z={x;}_,€K(M,S), then le logz; < Slog M. (3)
i=1

64

We also use the following inequality for non-negative x and y:
(z +y)log(z +y) < xlogz + ylogy + x +y, (4)

which under the assumption 0log0 = 0 is a corollary of the binary entropy
x

bound —aloga — (1 —a)log(l —a) <1 for a = et

Lemma 4. Let ¢ > 1, b > 0, d > 0 be constants and let k — oo be a
parameter. Denote r = (klogk)?. Let L, M be numbers and p = {p;}i_;,
s={si}_y, u={u;},_, be tuples satisfying the following conditions:

_ _ bL i
pe€ K(r, L), SEK<qkr’logk>’ u; > 0, ;uZSM (5)

Then
d log log k
Z log Z(pi, si+uw;) < d (H—O (iglﬁ)) Llogk+M log M+O(M). (6)
i=1
Proof. Using lemma 3, we have
Z(pi,si +u;) < (c(pi + s; + ul))

Taking the logarithm and summing by all tuple elements, we obtain

Pitsitu;

t ¢
Z log Z (ps, si + ui) < E:(pz + si +u;)(logc +log(pi + si +u;)). (7)
i=1 i=1
Using twice (4), then (3) with (5), we bound the right side of (7):
¢

> (i + si + i) (log ¢ + log(pi + si + u;)) <
=1

< (pi log p; + s;log s; + u; logu; + (pi + s; + ui)(logc + 2)) <

]~

1

<.
I

L bL
< Llogr + log(gkr)+MlogM + (logc+2) | L+ —+ M | =
log k ~—— log k
O(log k) d
O(L+M)
= Llogr + MlogM + O(L + M).

Substituting the bound into (7), we obtain
t
> “log Z(pi, i+ ui) < Llogr + Mlog M + O(L + M) =
i=1

= Ld(log k +loglog k) + M log M + O(L + M) =

log log k
_ <1+0<Og Oi))Ldlogk+MlogM+O(M).

log

65

O

The following two lemmas allow to obtain a trivial lower bound for
Shannon function for circuits with an arbitrary support.

Lemma 5 (3], theorem 11.5). For each constant ¢ > 0 the ratio of Boolean
functions of n variables satisfying the inequality

L(f)>(1-o>

n

approaches 1 as n — o0.

Lemma 6. Let T be an arbitrary support, k € N, n — co. Then
L(ME,n) > z
n
Proof. The lemma is an immediate corollary of lemma 5 and the fact that the

complexity of a multilayer circuit is not less than the size of the corresponding
Boolean circuit. O

4.2. The lower bound theorem

In this section we finish the proof of lower asymptotic bound for L(M kT ,n),
where T € G(A,q,0). We also prove a corollary allowing to obtain a lower
bound for supports having separability function of more general type, e.g.

log p, /ploglog p, etc.

Lemma 7. Let T € G(\,q,0). Let Ng(n,m,L) be the number of Boolean
functions in By, computable by k-layer circuits in T with size not greater
than L. Then as k — oo, the following inequality holds:

Llogk log log k

T

< = =2

log N, (n,m, L) - <1+O(oo k))—i—

+ (n +m)(log L + log(n 4+ m)) + O(n + m).

Proof. Let us denote r = (klog k)ﬁ We consider only great enough values
of k to suffice the conditions on 7 from lemma 2. Thus every finite subgraph
G of the support T has a r*-partition which we denote by P(G).

We can build a mapping between k-layer circuits of size not greater than
L computing a Boolean function in B, ,, and tuples of the following objects:

1) Subgraph G of the support where we embed the corresponding Boolean
circuit.

66

2) A tuple v of vertices of G where we embed inputs and outputs of the
Boolean circuit.

3) A set of directed wires between fragments of P(G).
4) A tuple of Boolean functions computed in fragments of P(G).

It is easy to see that circuits computing different Boolean functions are
mapped to different tuples. Thus we can bound the number of Boolean
functions by the number of possible tuples. Obviously we can bound the
number of elements per each tuple item and find the product of the bounds.

Denote the corresponding upper bounds as Aj, As, A3, A4, where the
correspondence is defined by the order of items above.

As T € G(A, ¢q,0), we have

0L+1
-1

A <O04+02+...+0F <

Let us bound Ay. Obviously there exist L™ tuples of n +m vertices of
G. Hence Ay < L™,
The number of edges between the fragments of the r*-partition P(G) is

SLr™ _ _dL :
bounded by “=— = Flosk where ¢ is a constant. In each of these edges we
can conduct no more than k£ wires. Thus there can be no more than lgng

wires mutually connecting the fragments of P(G). For each of these wires
there are three options: directed in one way, directed in the opposite way
and missed. Therefore 51

Az < 3lesk,

We introduce the following notation to obtain the bound for A4. Let G;
be the fragments of P(G), t be the number of the fragments, p; be the number
of vertices in i-th fragment, s; be the number of wires that can be conducted
outside from G;, and u; be the total number of inputs and outputs of the
Boolean circuit embedded into G; (i.e. the number of items in the tuple v
corresponding to the vertices of G;). It’s clear that each Boolean function
computable in G; must have no more than p; gates and no more than s; + u;
inputs and outputs in total. Hence the following inequality holds:

t
Ay <] 2 si + wa).
=1

By multiplying the bounds for A; we obtain

t
5L
. Ln+m . 3logk . HZ(pi’ s; + Uz)
=1

0—1

67

Taking the logarithm and omitting the negative addend be obtain

log NI (n,m, L) < (L + 1) log# +(n +m)log L+
—_———

o(L)
5L !
+ logklog3+ZIOgZ(pi,si + ;). (8)
—_—— =1
o(L)

Let us bound the sum >_'_, log Z(p;, s; + ;) in the right side of (8). We
claim that we can apply lemma 4.

We obtain the following conditions for tuples p = {p;}!_;, 5§ = {s;}}_; by
using (2): pe K(r,L), s€ K (qkr, %). For tuple @ = {u;}t_, it’s obvious
that u; > 0, Zle u; < n+m. Finally we have ¢ > 1, > 0, ﬁ >0,k — o0

and r = (klog k‘)ﬁ Thus all conditions of lemma 4 are satisfied. Hence

t
Llogk loglog k
ey N\ <
E log Z(pi, si +ui) < T <1+O< log & +

i=1

+ (n 4+ m)log(n +m) + O(n + m).

Combining the bounds for addends in the right side of (8), we obtain

Llogk log log k
log NI (n,m, L) < 1°gA (1+0(°ﬁ)g°]g€ >)+

+ (n+m)(log L + log(n 4+ m)) + O(n +m).
O

In this paper we are interested in the case when n 4+ m is small compared
to L. In this case we can simplify the inequality in lemma 7.

Corollary 1. Under the conditions of lemma 7, if Kk — o0 and n +m <
L/log L, then

Llogk loglog k
o ¥) < S5 (1 025t)

Lemma 8. Let T € G(\,q,0), k — oo, n — oo. Then
2"(1—=\) loglog k
T
> .

68

Proof. Tt follows from lemma 6 that for great enough values of n and any k
the inequality below holds:

1 27
LOME) > 5 = ©)

n

Let k — 0o, n — oo. We denote L = L(M]',n) for brevity. Using the
term N'(n,m, L) defined in lemma 7, we obtain the identity

Nl(n,1,L) = 22",

It follows from (9) that n = O(log L) = o(L/log L). By applying corollary
1 of lemma 7 we obtain

Llogk loglog k
2" < 1 —— .
T 1= (+O< log k))

This implies the claim of the lemma. O

Theorem 1. Let 0 < A< 1, T € G(\,q,0). Then

2n 21 —
L(MT,)>max< ,(7)\)

as k — 0o, n — 0.
n log k)

Proof. 1t follows from lemmas 6 and 8. O

Hereby we obtained the lower bound for A-separable supports, i.e. for
supports with separability function like p*. Using theorem 1 one can obtain
lower bound for supports with separability function like log p, |/ploglogp,
etc.

Corollary 2. Let 0 < \g < 1, f(p) = O(p*) for all X\ > X\g. Let T € G(q,0)
be a f(p)-separable support. Then
97 97(1 — \o)

L(MT,)>max<)

- gk > as k— oo, n—o0. (10)

Proof. Let A > Ag. It’s Clear that T is p*-separable. From theorem 1 we have
L(M,Z, >max<)ask‘—>oo,n—>oo.

n’ logk
Let us denote g(\, k,n) = max (%, Zzglgfk)‘)) We have
L(MF
it XM S <A< L
k—oo g(\ k,n)
n—oo

69

(Ak,n) 1—X\
gg(/\o,k,n) > {3, therefore
A :=liminf ——£E""2 > liminf . o) S
2es 9(Xos kym) — koo 1 — X gNkn) T 1=X
— 00

n n—0o0

It’s easy to see that

for all \g < A < 1.

Hence A > sup % = 1. The latter implies (10). O
1>A>)No 0

5. Lower bound for d-dimensional circuits

In this section we obtain the lower bound for d-dimensional circuits and the
asymptotics for d-dimensional rectangular circuits. In substance the lower
bound for d-dimensional circuits is a corollary for the lower bound for A-
separable supports, since we prove that all d-dimensional supports belong to
classes G(\, q,6).

5.1. Properties of d-dimensional graphs

Essentially we have to prove that d-dimensional graphs have three properties:
bounded vertex degree, exponentially bounded number of non-isomorphic
subgraphs, and \-separability.

Lemma 9. Let T be a d-dimensional support (accordingly let G be a class of
d-dimensional graphs) with a parameter c.. Then degree of any vertex in T
(accordingly in any graph from G) is bounded by (2c. + 1)<.

Proof. When placing arbitrary d-dimensional graph into d-dimensional space
the neighborhood of any vertex is placed into a ball of radii c.. Since d-
dimensional balls with radii 0.5 and centers in graph vertices do not intersect
and lie inside a ball with radii ¢, + 0.5, the number of such balls cannot
exceed the ratio of volumes of d-dimensional balls with radii ¢, + 0.5 and 0.5
respectively. This ratio is equal to (2c. 4 1)%. O

Lemma 10. Let T be a d-dimensional graph. Then the number of non-labeled
subgraphs of T with n vertices does not exceed 0™, where 0 is a constant.

Proof. Immediately follows from the remark to lemma 2 in [15]. O

We apply the results of [21] to prove A-separability of d-dimensional
graphs.

Definition 4 (|21], definition 2.3). Let o > 1 be given, and let B =
{B1,Ba,...,Bp} be aset of closed d-dimensional balls with non-overlapping

70

interiors. The a-overlap graph for B is the undirected graph with vertices
V ={1,2,...,p} and edges

E={{i,j}: Biﬂ(a-Bj) # @ and (a-Bi)ﬂBj #+ o},
where « - Bj is a ball centered as B; and having o times greater radii.

The following lemma shows the connection between d-dimensional graphs
and a-overlap graphs.

Lemma 11. Let G be a class of d-dimensional graphs with a parameter ce.
Then each graph in G can be supplemented by some number of edges (possibly
0) resulting to a 2c.-overlap graph in a d-dimensional space.

Proof. Let G € G. Consider the placement of G into a d-dimensional space,
and let G’ be the 2c.-overlap graph for the balls of radii 0.5 and centers in
the vertices of GG. Since the distance between centers of any two balls is not
less than 1, interiors of the balls do not intersect.

If there is an edge between two vertices in G, the distance between the
centers of the corresponding balls does not exceed c.. Therefore balls with
the same centers and radii 0.5 and 0.5 - 2¢c, = ¢, respectively would intersect.
Hence all edges of G are also edges of G’. 0

Lemma 12 (|21], theorem 2.4). Let d > 1, o > 1 be constants. Then there
exists a function

) =0 (a-pT +c(a,d))

such that each a-overlap graph in a d-dimensional space is vertex f(p)-

separable. The separator splits its parent graph into pieces with no more than
d+1

T2 of the initial number of vertices.

Essentially lemma 12 claims dgl—separability of all a-overlap graphs in a

d-dimensional space.

Remark 5. In the source [21] lemma 12 was stated in a slightly different
way. Considering any a-overlap graph in d-dimensional space, it was claimed

that the graph has a separator of size bounded by O (a -p% + c(a,d)).

Since the separability function is common for all graphs in a monotone class,
we modified the statement of the lemma in this paper to emphasize the
independence of the separability function from individual graphs.

Corollary 3. Let G be a class of d-dimensional graphs. Then G is pd%dl_
separable.

Proof. Immediately follows from lemmas 11 and 12. O

71

5.2. Shannon function bounds

d-dimensional circuits. We apply the properties of d-dimensional graphs
proved in the previous section and obtain the lower bound for d-dimensional
circuits.

Theorem 2. Let T be a d-dimensional support. Then

277/
L(MF > k — — 00.
(M.,n) 2 min(n, dlog k) @ 0o e

Proof. Immediately follows from theorem 1, lemmas 9, 10 and corollary 3. [

Multidimensional rectangular circuits. Multidimensional rectangular
circuits are a special case of d-dimensional circuits, thus the lower bound
from theorem 2 is also applicable for these circuits.

An upper bound of Shannon function for multidimensional rectangular
circuits was proved in [26].

Lemma 13 (|26], theorem 1).

2n
LM n) < ————— as k— 00, n— .
(Mi;m) S min(n, dlog k)
Applying theorem 2 and lemma 13 we obtain the asymptotics of Shannon
function for multidimensional rectangular circuits.

Corollary 4.

2n
L(M¢ ~N—_———— k .
(M, n) min(n, dlog k) 4 W00, 7 00

6. Conclusion

In this paper we proved the lower bound for Shannon function L(M],n) >

2n 2"(1-)) "
max (7’ log k&
special case of such supports are d-dimensional graphs for which thereby we
proved the lower bound L(M[,n) > W.

A natural direction of developing the obtained results is examining classes
of graphs with a separability function different from p*. For example, graphs
supporting a placement in a hyperbolic space are of interest. It was proved
in [14] that such graphs have logarithmic separability function. Corollary 2
of theorem 1 allows to obtain a lower bound for Shannon function for such

graphs. However the question about upper bounds remains open.

) for any support 7" from a class G(\, ¢,0). An important

72

References

1]
2]

3]

4]

[5]

[6]

7]
18]

19]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

A. Albrecht, “On circuits of cellular elements”, Problemi Kibernetiki, 33 (1978),
209-214 (in Russian).
N. Bonichon, C. Gavoille, N. Hanusse, D. Poulalhon, G. Schaeffer, “Planar

Graphs, via Well-Orderly Maps and Trees”, Graphs and Combinatorics, 22
(2006), 185-202.

A.V. Chashkin, Discrete Mathematics, Akademiya, Moscow, 2012 (in Rus-
sian), 352 pp.

0O.V. Cheremisin, “On the activity of cell circuits realising the system of all con-
junctions”, Discrete Mathematics, 15:2 (2003), 113-122 (in Russian); English
translation in Discrete Mathematics and Applications, 13:2 (2003), 209-219.

A. A. Efimov, “The top assessment of energy consumption in a class of volume
schemes”, Intelligent Systems. Theory and Applications, 23:1 (2019), 117-132
(in Russian).

A. A. Efimov, “The upper estimate of the volumetric power consumption of the
circuits that implement boolean operators.”, Intelligent Systems. Theory and
Applications, 23:2 (2019), 105-124 (in Russian).

G.N. Frederickson, “Fast algorithms for shortest paths in planar graphs, with
applications”, SIAM Journal on Computing, 16:6 (1987), 1004-1022.

S.V. Gribok, “On one base for circuits of cellular elements’, Vestnik
Moskovskogo Universiteta. Seriya 15: Vichislitelnaya matematika i kibernetika,
4 (1999), 36-39 (in Russian).

G.V. Kalachev, “Order of power of planar circuits implementing Boolean
functions”, Discrete Mathematics, 26:1 (2014), 49-74 (in Russian); English
translation in Discrete Mathematics and Applications, 24:4 (2014), 185-205.

G. V. Kalachev, “On the simultaneous minimization of area, power and depth
of planar circuits computing partial Boolean operators”, Intelligent Systems,
20:2 (2016), 203266 (in Russian).

G. V. Kalachev, “Bounds on power of planar circuits computing functions with
limited number of ones”, Intelligent Systems. Theory and Applications, 21:1
(2017), 28-96 (in Russian).

G. V. Kalachev, “Bounds on power of planar circuits computing monotone func-
tions”, Intelligent Systems. Theory and Applications, 21:2 (2017), 163-192 (in
Russian).

G. V. Kalachev, “On the lower bound for the maximum potential of plain cir-
cuits with several outputs through the area”; Intelligent Systems. Theory and
Applications, 22:1 (2018), 111-117 (in Russian).

S. Kisfaludi-Bak, “Hyperbolic Intersection Graphs and (Quasi)-Polynomial
Time”, Proceedings of the Thirty-First Annual ACM-SIAM Symposium on Dis-
crete Algorithms, SODA 20, Society for Industrial and Applied Mathematics,
USA, Utah, Salt Lake City, 2020, 1621-1638.

A.D. Korshunov, “On the complexity bounds of circuits of volumetric elements
and volumetric Boolean circuits”’, Problemi Kibernetiki, 19 (1967), 275283 (in
Russian).

M. R. Kramer, J. van Leeuwen, “The VLSI complexity of Boolean functions”,

Logic and Machines: Decision Problems and Complezity, eds. Borger E., Hasen-
jaeger G., Rédding D., Springer, Berlin, Heidelberg, 1984, 397-407.

73

[17]

(18]
[19]
[20]

21]

22]

23]

24]

[25]

[26]

27]

(28]

S.S. Kravtsov, “On the realization of Boolean functions in one class of logic
elements and connectors”, Problemi Kibernetiki, 19 (1967), 285-293 (in Rus-
sian).

R.J. Lipton, R.E. Tarjan, “A separator theorem for planar graphs’, STAM
Journal on Applied Mathematics, 36:2 (1979), 177-189.

O.B. Lupanov, “On the synthesis of some classes of control systems”, Problem
Kibernetiki, 10 (1963), 63-97 (in Russian).

W.F. McColl, “Planar circuits have short specifications”, 2nd STACS. Lecture
Notes in Computer Science, 182 (1985), 231-242.

G.L. Miller, S. Teng, W. Thurston, S. A. Vavasis, “Geometric separators for
finite-element meshes”, SIAM Journal on Scientific Computing, 19:2 (1998),
364-386.

D. E. Muller, “Complexity in Electronic Switching Circuits”, IRFE Transactions
on Electronic Computers, EC-5:1 (1956), 15-19.

J. E. Savage, “Planar Circuit Complexity and The Performance of VLSI Algo-
rithms”, VLSI Systems and Computations, eds. Kung H.T., Sproull B., Steele
G., Springer, Berlin, Heidelberg, 1981, 61-68.

J.E. Savage, “The performance of multilective VLSI algorithms”, Journal of
Computer and System Sciences, 29:2 (1984), 243-273.

N. A. Shkalikova, “On the implementation of Boolean functions by schemes
of cellular elements’, Mathematical Problems of Cybernetics. V.2, Nauka,
Moscow, 1989, 177-197 (in Russian).

T.R. Sitdikov, “The complexity of multidimensional rectangular circuits de-
sign”, Intelligent Systems. Theory and Applications, 23:3 (2019), 61-80 (in
Russian).

C.D. Thompson, “Area-Time Complexity for VLSI”, Proceedings of the
Eleventh Annual ACM Symposium on Theory of Computing, STOC 79, Asso-
ciation for Computing Machinery, New York, NY, USA, 1979, 81-88.

J.D. Ullman, Computational Aspects of VLSI, W. H. Freeman & Co, USA,
1984.

74

The two-dimensional closest neighbor
search problem solution using the cellular
automata with locators !

D.I. Vasilev?

This article describes a cellular automaton with locators that
solves the problem of finding the nearest neighbour. The problem
is to find from a finite set of points the one closest to a
predetermined "central"point. In contrast to the classical model of a
cellular automaton, in the model under consideration, instantaneous
transmission of signals through the ether at an arbitrary distance is
allowed. It is shown that this possibility makes it possible to solve the
problem in constant time, which is strikingly different from the one-
dimensional case, where a logarithmic lower complexity estimate by the
minimal distance is obtained.

Keywords: cellular automata, homogeneous structures, the closest
neighbour search problem.

A cellular automaton with locators is a 8-tuple
0= (Zkv E,,V, Eqa +, L, o, ¢)

where ZF is the set of k-dimensional vectors with integer coordinates,
E, ={0,1,...,n — 1}, V = (au,...,ap_1) is an ordered set of pairwise
different nonzero vectors from Z*, E, = {0,1,...,¢— 1}, + is a commutative
semigroup operation defined on E,, L = (v1,...,1,) is an ordered set of
pairwise different solid angles in R* with a vertex at the origin, ¢ : E" XEJ" —
FE,, is a function depending on the variables zg,z1,...,Zh_1, 21, ., 2m such
that (0,...,0) =0, ¢ : Bl x EJ* — B is a function that depends on the
variables xg, x1,...,2Tp_1, 21, - . . , Zm. Here the variables xq, x1,...,x,_1 take
values from F, and the variables 21, ..., 2, take values from F,. Elements
of the set ZF are called cells of the cellular automaton o; elements of the
set E,, are called cell states of the cellular automaton o; the set V is called
the neighborhood pattern of the cellular automaton o; elements of the set E,
are called broadcasting signals; the set L is called the locator pattern of the
cellular automaton o; the function ¢ is called the local transition function
of the automaton o; the function 1 is called the broadcasting function of

1 Originally published in Intellektualnye Sistemy. Teoriya i prilogeniya (2021) 25,

No. 4, 83-87 (in Russian).

2 Vasilev Denis Igorevich — junior researcher, Lomonosov Moscow State University,
Faculty of Mechanics and Mathematics, Chair of Mathematical Theory of Intelligent
Systems, email: denis.vasilev.igor@gmail.com

75

the automaton o. The state 0 is interpreted as rest state and the condition
©(0,...,0) =0 is interpreted as a condition for maintaining the rest state.

This definition was introduced by Gasanov E.E. [1] and improved by
Kalachev G.V. [2].

Let’s formulate the closest neighbour search problem on the line. Let
the I be the initial state of a cellular automaton on Z!' which satisfies the
following conditions: a) Any cell is on one of {gs;qc,, *} states; b) There is
only one g¢, cell; ¢) There is a finite and non-empty set of gg cells.

We will define that a cellular automaton state I’ is solution for the
problem I if I’ satisfies the following conditions: a) The g¢, cell from I
is in gop state in I’; b) The cell which is the closest to the g¢, cell in I is in
the qgg state. If there are several closest cells then an arbitrary one must be
chosen; c) The rest cells are in * state.

We define that cellular automaton o solves the closest neighbour search
problem if it satisfies the following conditions: a) If the initial state I of the
cellular automaton is a closest neighbour search problem then the automaton
must end up in I’ state which is solution for I; b) If the automaton takes
state S which is solution for some closest neighbour search problem this state
must be kept for all the next tacts.

Let’s call the general position of the closest neighbour search problem a
problem in which there is at least one cell in the state gg on both sides of
the cell in the state qc,.

In the article [3|, the theorem was proved for the one-dimensional case:

Theorem 1. There is a cellular automaton o with 25 states and with the
power of the broadcasting alphabet 12, which solves the problem of finding the
closest neighbour in a time not exceeding logy s + 7, where s is the distance
from the central cell with the initial state qc, to its nearest neighbour with
the initial state qg.

An article with a similar lower complexity estimate was sent to the
editorial office of the Vestnik of the MSU journal:

Theorem 2. For any cellular automaton with locators o with the power of
the broadcasting alphabet M and any general position of the nearest neighbour
search problem I, T7 > logy () is performed, where s is the distance from
the cell in the state qc, to the nearest cell in the state qs in the problem I,
and TY7 is the number of the clock cycles for which the automaton o solves

the problem 1.

Thus, for the one-dimensional case of the nearest neighbour search
problem, the order of complexity of the problem is obtained.

It turned out that for the dimension n > 2, similar estimates are incorrect,
since for such problems it was possible to build an automaton with locators

76

that solves them in constant time. Here is an example of such an automaton
for the case of n = 2:

Theorem 3. There is a cellular automaton o with 15 states and with the
power of the broadcasting alphabet 40, which solves the two-dimensional
problem of finding the nearest neighbour in a time not exceeding 13.

Consider a cellular automaton with locators o with a set of locators
consisting of locators from Fig. 1 and one expanded locator that reads
the sum of the signals of all cells of the cellular space. Let’s define the
broadcasting alphabet as a subset {0;1}?° and a semigroup operation of
a component-by-component maximum on it. For convenience, we will denote
the cell signals by one or more numbers - the numbers of non-zero positions
in the ether signal. So the signal (0,1,0,1,0,...,0,0,0) we will record as a
pair of signals 2 and 4.

D3 D2

v R3
Fig. 1. Locators layout and names

Let’s define a coordinate system on the cellular space with the center in
the central cell. The central cell in the constructed automaton constantly
sends a 1 signal to the ether. Cells that receive such a signal from the R3
locator will realize that they are on the upper coordinate semi-axis. Similarly,
each cell can identify its location on the other three coordinate semi-axes.
The cells located on the semi-axes constantly send a signal to the ether with
the number of their semi-axis (upper — 2, right —3, lower —4 and left —
5). By these signals, each cell can recognize in which coordinate quarter it is
located. For example, having received the signal 2 from the locator R4 and
the signal 3 from the locator R3, it is possible to uniquely determine that the
cell in question is in the first coordinate quarter. The idea of functioning of
the constructed automaton is to project along the Manhattan circle all the
points from the problem on one semi-axis, find the projection closest to the
center, and then restore its prototype. For example, a point from the first
quarter can send a special signal that is read only by the right semi-axis. A
point from the right semi-axis, having received such a signal from the locator

7

D4, will understand that it is a projection of one of the points of the problem
(Fig. 2 on the left). By repeating this iteration 4 times, you can project all
the points onto the upper semi-axis (Fig. 2 on the right).

Fig. 2. On the left is an example of projecting a single point onto a semi-
axis. On the right, the progress of projecting the problem onto the upper
semi-axis.

To find the nearest neighbour on the upper semi-axis, it is enough for each
candidate to broadcast a special signal, and after receiving such a signal from
the R3 locator, he will withdraw (i.e., switch to the default state). After the
nearest projection is found, it is enough to restore its prototype by the reverse
course of the described algorithm.

References

[1] Gasanov E. E., “Cellular automata with locators”, Intelligent systems. Theory
and Applications, 20:2 (2020), 121-133 (In Russian).

[2] Kalachev G. V., “Remarks on the definition of a cellular automaton with
locators”, Intelligent systems. Theory and Applications, 24:4 (2020), 47-57 (In
Russian).

[3] Vasilev D. 1., “The closest neighbour problem solution using the cellular

automata with locators model”, Intelligent systems. Theory and Applications,
24:3 (2020), 99-120 (In Russian).

78

Implementation of key-value databases by

cellular automata with locators !

E.E. Gasanov?, A. A. Propazhin®

In this paper, it is shown that key-value databases can be
implemented by cellular automata with locators in such a way that
the execution time of basic operations, such as search, insert, delete,
will not depend on the size of the database and will be equal to the
total length of the key and value.

Keywords: Cellular automata with locators, key-value databases.

The key-value database is a popular data storage paradigm now, also
called a dictionary. Such a database can be represented as a set of pairs of
strings (k,v), where the first string k is called the key and serves as the
identifier of the pair, and the second string v is called the value. String is a
sequence of characters of some alphabet A, ending with a special character
0, called the string ending character, and the character 0 does not belong to
the alphabet A.

The key-value database supports the following operations:

1) inserting a pair (k,v) — an entry with the key k£ and the value v
appears in the database; if an entry with the key k already existed in the
database, then the value is replaced with v;

2) deleting an entry with a key k — an entry (k,v) is deleted from the
database; if there is no entry with the key k in the database, then the database
does not change;

3) searching for an element by key k — there is an entry (k,v) in the
database, and the value v is returned as an answer; if there is no entry with
the key k in the database, then the answer is an empty set.

The concept of a cellular automaton with locators was introduced by
E. E. Gasanov in [1] and refined by G. V. Kalachev in [2]. The exact definition
can be found in the above-mentioned works, but here we give an informal
definition of a one-dimensional cellular automaton with one complete locator,
which will be used in this work.

A one-dimensional cellular automaton is a set of identical elementary
automata located at integer nodes of the real line, and called cells. The

! Originally published in Intellektualnye Sistemy. Teoriya i prilogeniya (2021) 25, No.
4, 108-112 (in Russian).

2 Gasanov Elyar Eldarovich — professor, Lomonosov Moscow State University, Faculty
of Mechanics and Mathematics, Chair of Mathematical Theory of Intellectual Systems,
e-mail: el gasanov@gmail.com.

3 Propazhin Artem Alekseevich — student, Lomonosov Moscow State University, Faculty
of Mechanics and Mathematics, Chair of Mathematical Theory of Intellectual Systems, e-
mail: artem.propazhin@mail.ru.

79

behavior of a cellular automaton is specified by the transition function,
namely, the state of the cell at the next moment is uniquely determined
by its own state at the current moment and the states of its neighbors. In
what follows, we will assume that each cell has exactly two neighbors: the
closest to the left and the closest to the right. One of the states of a cell is
called an quiescent state, and if the cell and its neighbors are in an quiescent
state, then the next moment the cell will remain in an quiescent state. In a
cellular automaton with one complete locator, in addition to the alphabet
of states, there is a broadcasting alphabet with a commutative semigroup
operation specified on it. In this paper, the maximum operation will be used
as such an operation. In a cellular automaton with one complete locator,
each cell sends a certain signal from the broadcasting alphabet, determined
by the broadcasting function, to the air every moment. The value of the cell
broadcasting function is determined by the cell’s own state, the states of its
neighbors and the total broadcasting signal. The total broadcasting signal is
formed by summing up the broadcasting signals of all cells with the exception
of the signal of this cell using a semigroup operation. In a cellular automaton
with one complete locator, the value of the cell transition function is also
determined by the cell’s own state, the states of its neighbors and the total
broadcasting signal.

Let’s introduce another entity — the database user. We will assume that
the database user has the ability to send signals from the broadcasting
alphabet to the air, i.e. his broadcasting signal is summarized with
broadcasting signals of all automata. And database user can receive total
broadcasting signal from the air. We will assume that a cellular automaton
with locators, together with the user, implements a key-value database if the
broadcasting alphabet is a set consisting of pairs of the form (“command",
AU{0}), where “command” takes one of the values: “search®, “insert, “delete”,

“answer”, “no answer", “

no command® (here “no command® is the minimum
element), and the behavior of the cellular automaton is set as follows.

1) The user broadcasts the “search” command and the first character of
the key k. Then the user sequentially broadcasts the “no command* command
and all the other characters of the key, including the character 0. If there is
no entry with the key k, in the database, then on the next clock cycle after
the 0 character is given, the cellular automaton broadcasts the command “no
answer”. If there is an entry (k,v) in the database, then on the next clock
cycle after the character 0 is submitted, the cellular automaton broadcasts
a pair (“answer”, a), where a € A is the first element of the value v, and
in subsequent cycles the cellular automaton sequentially broadcasts all other
symbols of the value v, including the character 0.

2) The user broadcasts the “insert* command and the first character of
the key k. Then the user sequentially broadcasts the “no command* command

80

and all the other characters of the key, including the character 0. After
that the user sequentially broadcasts the “no command“ command and all
characters of the value v, including the character 0. As a result, a pair (k,v)
appears in the database implemented by the cellular automaton, i.e. if the
“search” command and the key k are subsequently submitted to the cellular
automaton, then the cellular automaton will return the value of v in response.

3) The user submits the “delete* command and the first character of the
key k. Then the user sequentially broadcasts the “no command* command
and all the other characters of the key, including the character 0. As a result,
the entry with the key k& disappears from the database implemented by the
cellular automaton, i.e., during the subsequent search for the key k, the
cellular automaton returns “no answer®.

Theorem 1. There is a cellular automaton with locators and a user which
implements a key-value database, and for which the execution time of the
search, insert, delete operations will not exceed the total length of the key and
value.

Here is the idea of proving this theorem.

We will use a one-dimensional cellular automaton with one complete
locator, and elementary automata lying in the negative region of the
numerical line will not be used. The alphabet of broadcasting has already
been described above. The alphabet of states consists of triples of the form
(“command®, “cell type, A U {0, x}), where “command” takes one of the

G,

values: “search”, “insert”, “delete”, “answer*; “cell type* takes one of the values:
“‘commander’, “current cell type key"“, “current cell type value®, “unprocessed
cell“, “receiver for recording”; * is a special character. If an elementary
automaton will be marked with the symbol ‘“receiver for recording” then
starting from this automaton the next record will be written to the database.
At the initial moment, the automaton with the number 0 will be marked with
symbol “receiver for recording®. Database records will be pairs of key-value
strings, and the first character of each record will be marked with the state
“commander”.

Let’s describe the functioning of this automaton. When the insertion
begins, all commanders receive a signal from the air in the form (“insert,
k1), where k; is the first character of the key. If k1 matches the value stored
in the state of the commander cell, then in the state of the cell next to
the right, the command changes to “insert® and the cell type to “current
cell type key“. On the next clock cycle, the cell next to the right of the
commander, also receiving a signal from the air, checks for a match with the
stored symbol. After that the current cell changes its type to “unprocessed
cell. When a match occurs, in the state of the cell next to the right of
current cell, the command changes to “insert® and the cell type to “current

81

cell type key“ and a similar process occurs to the previous one. The process
occurs sequentially up to and including the 0 symbol. The key verification
process starts simultaneously with all commanders. If at some point there is
a mismatch, then the type of the next cell changes to “unprocessed cell”. If
we have reached the 0 symbol, it means that we have found a record with the
desired key, and this record should be excluded from the database. Exclusions
from the database are achieved by the fact that 0 in the state of the current
cell changes to the symbol . As a result, there will be no match in subsequent
searches.

Simultaneously with the search for the key, starting from the cell marked
with the state “receiver for recording” the key-value pair is sequentially
recorded into the database. When the insert command arrives, the cell in
the “receiver for recording* state becomes the commander and stores the
first character of the key ki in its state. At the same time, the cell to
the right of this cell changes the command to “insert“ and the cell type
to “receiver for recording”. Further, the cells that have the “insert* command
and the “receiver for recording” cell type retain the key symbols and values
coming from the air in their state. In this case, the state (“insert, “receiver
for recording”) moves to the next cell on the right. The exception is when the
0 character arrives for the value. At this moment, the next cell on the right
switches to the state (“search®, “receiver for recording®).

Deletion is similar to insertion. Only during deletion does the process of
writing to the end of the database not begin.

During the search, the key is read in the same way as when inserting. But
after reaching the 0 symbol, the replacement of the symbol 0 with * does not
occur. The cell next to the right of the cell with the 0 symbol changes the
command to “search” and the cell type to “current cell type value®. Cells in
this state send a signal to the air (“answer®, a), where a € A is the stored
value. The current cell changes its type to “unprocessed cell* after sending
the signal. Signals with value symbols are sequentially sent to the air up to
and including the signal with the symbol 0.

Crmicok aurepaTryphl

[1] Gasanov E. E., “Cellular automata with locators”, Intelligent Systems. Theory
and applications, 24:2 (2020), 121-133 (In Russian).

[2] Kalachev G. V., “Remarks on the definition of a cellular automaton with
locators”, Intelligent Systems. Theory and applications, 24:4 (2020), 47-56 (In
Russian).

82

K cBegenunio aBToOpoB IyOJ/MKaLUil B >KypHAJIe
«HTenneKTyasbHble cucTeMbl. Teopus U MPUIIO>KEHUST »

B coorBercrBum ¢ rpeboBanusMu BAK P® K uznanusiM, BXOISIIUM B IE€pe-
YeHb BEJIYIIUX PEIEH3NPYEeMbIX HAYUHbBIX 2KYPHAJIOB U U3/IAHU, B KOTOPBIX MOT'YT
OBITH OITyOJIMKOBAHBI OCHOBHbBIE HAY'HbIE PE3Y/IbTAThI IUCCEPTAINN HA COUCKAHUE
yUEHOI CTeIeHn JIOKTOPAa U KaH/In/IaTa HAyK, CTaThbU B 2KypHas «HTesekTyanb-
HbIe CUCTEMBI. Teopus U TPUJIOKEHUAY [TPEIOCTABIISIOTCSI ABTOPAMU B CJIEIY IO
dopme:

1. Crarbu, nHabpannbie B makere INTEX, mpenocTaBistiorces K 3arpyske gepe3 WEB-
dbopmy http://intsysjournal.org/generator form .

2. K crarbe npuwraraiorcs (afiibl, cojepKaliue Ha3BaAHUE CTATbU HA PYCCKOM W
AHIVINIICKOM $I3BIKAX, AaHHOTAIMIO Ha PYCCKOM ¥ aHIVIMACKOM si3bikax (He Gosiee 50
CJIOB), CIIMCOK KJIFOUEBBIX CJIOB HA PYCCKOM U AHIVIMHACKOM si3blKax (He Gosee 20
cisioB), nadopmarnus 06 apropax: @.1.0. nosHOCTHIO, MECTO PABOTHI, JOJIKHOCTD,
ydeHas CTelleHb U /Wi 3BaHue (ec/im UMeeTcs), KOHTaKTHbIe TesteOHbl (¢ KOJIoM
ropoJia M CTPaHbl), e-mail, MoYTOBbI aJapec ¢ UHAEKCOM ropoja (JoMalHuil uim
CITy 2KEOHDIIT).

3. Crucok urepaTypbl 0hOPMIISIETCS B €IMHOM (POPMATE, YCTAHOBJIEHHOM CUCTE-
Mot Poccuiickoro namaekca HayIHOTO IMTATUPOBAHUSI.

4. 3a mybaukamuio crareil B XKypHaJe «VHTetekTyaabHble cucreMbl. Teopust u
[PUJIOYKEHUST» C ABTOPOB (B TOM YHCJIE ACIIUPAHTOB BBICIINX YIeOHBIX 3aBeeHui)
craTel, pPEKOMEH/IOBAHHBIX K IyOJukaiuu, miara He B3umaercs. OTTUCKY cTaTeil
aBTOpPaM He IPEeIOCTAB/IAIOTCH. 2KypHAaJI PaCIPOCTPAHIETCS 10 OJIIIUCKE, YK3EM-
IUISIPBI YKYPHAJIA PACCHUIAIOTCS MOJIINCINKAM HAJIOXKEHHBIM ILJIATEXKOM. YCJIOBUS
nognucku nybsmkyiores B katajgore HTU «Pocneuarsy, nnmgekce xypuaga 64559.
5. JlocTym K 971eKTPOHHON BEPCUU TIOCJIEHETO BBIIIEIIIIEr0 HOMEPa OCYIIECTBIIS-
ercs uepe3s HIB «Poccuiickuit nnmekc HaydHoro murupopanusi». Homepa, BbI-
IIeIIIIe paHee, pa3MernanoTcs Ha cajite http: //intsysjournal.org, u goctym K HIM
OecruraTHblit. TaM ke OyIyT pa3MelleHbl AaHHOTAIUMNA BCEX ITyDJIMKYEeMbIX CTATEH.

83

[Tonmucano B meuars: 20.12.2021
Hara BbIxOma: 25.12.2021
Tupaxk: 200 3k3.
ena cBobogHAS
Csugerenbcrso o perucrpanuu CMU: ITN Ne ®C77-58444 or 25 urons 2014 r.,
BeIIaHo PeepaabHOi CayK00i 110 HaI30PY B cepe CBsI3u, NHMOPMAIMOHHBIX
TeXHOJIOIHUi 1 MaccoBbix KomMyHuKarmii(Pockomuazop).

84

