О числе максимальных надклассов в классе линейных автоматов

Часовских А.А.

Уточнены перечни предполных классов в классах линейных автоматов над конечными полями. Найден критерий конечности числа предполных надклассов для заданного множества линейных автоматов.

Ключевые слова: конечный автомат, линейный автомат, операции композиции, обратная связь, полнота, замкнутый класс, предполный класс, конечное поле.

%begindocument

Настоящая работа уточняет результат, полученный в [6]. Мы, в основном, используем определения и обозначения из этой работы.

Через E_k мы обозначаем поле, состоящее из k элементов. Как известно [3], при этом для некоторого простого числа p и натурального числа m выполнено: $k=p^m$. Множество многочленов от переменной ξ над полем E_k обозначаем $E_k[\xi]$, а поле частных для $E_k[\xi]$ — через $E_k(\xi)$. Поле $E_k(\xi)$ содержит подкольцо $E_k'(\xi)$, состоящее из дробей, знаменатели которых имеют ненулевой свободный член, изоморфное кольцу периодических (с предпериодом) рядов переменной ξ над полем E_k . Эти два кольца в дальнейшем мы не различаем. Множество всех формальных степенных рядов от переменной ξ над полем E_k обозначаем R_k .

Множество всех конечных автоматов, построенных из сумматора, задержек и усилителей [1] с использованием операций композиции [2], обозначим \mathfrak{L}_k . Рассуждениями из работы [4] можно показать, что линейный автомат с входными переменными x_1, x_1, \ldots, x_n это отображение $f(x_1, x_2, \ldots, x_n)$, из R_k^n в R_k ,

$$f(x_1, x_2, \dots, x_n) = \sum_{i=1}^{n} \mu_i x_i + \mu_0,$$
 (1)

где $\mu_i, \, \mu_i \in E'_k(\xi), \, i \in \{0, 1, \dots, n\}.$

Если выполнено равенство (1), то через U(f) будем обозначать множество { $\mu_i \mid i \in \{1, 2, ..., n\}$ }.

Введем следующие подмножества \mathfrak{L}_k .

$$T_a = \{ f \mid f(a, a, \dots, a) - a \in \xi R_k \},$$

 $a \in E_k$

$$V_1 = \{ \ f \mid \text{ из } (1) \text{ следует } | \{ \ i \mid \mu_i(0) \neq 0 \ \} | \leq 1 \ \} \,,$$
 $V_p = \left\{ \ f \mid \text{ из } (1) \text{ следует } \sum_{i=1}^n \mu_i(0) = 1 \ \right\},$

$$M_1 = \left\{ \ f \mid \text{ из } (1) \ \text{следует} \ \mu_i - \mu_i(0) \in \xi^2 E_k'(\xi), \ i \in \{1,2,\ldots,n\} \
ight\}.$$

Пусть $E_{k_1}, E_{k_2}, \ldots, E_{k_l}$ — все максимальные собственные подполя в E_k . Положим:

$$P_s = \{ f \mid \text{из } (1) \text{ следует } \mu_i(0) \in E_{k_s}, i \in \{1, 2, \dots, n\} \},$$

 $s \in \{1, 2, \dots, l\}.$

Через Ω обозначим множество автоморфизмов поля E_k . Если степень числителя дроби μ , $\mu \in E_k'(\xi)$, не превосходит степени его знаменателя, то дробь $\tilde{\mu}$, $\tilde{\mu} = \mu(1/\xi)$, содержится в $E_k'(\xi)$. В этом случае значение $\tilde{\mu}(0)$ обозначим $\Psi_0(\mu)$.

Занумеруем все неприводимые приведенные многочлены из $E_k[\xi]$,

$$p_1, p_2, \ldots,$$

так, что $p_1 = \xi$.

Если знаменатель дроби μ , $\mu \in E'_k(\xi)$, не делится на p_i , то для некоторых u и μ' , $u \in E_k[\xi]$, $\mu' \in E'_k(\xi)$ имеем:

$$\mu = u + p_i \mu', \operatorname{deg} u < \operatorname{deg} p_i.$$

Многочлен u в этом случае обозначаем $\Psi_i(\mu)$

Тогда положим:

$$M_{i,\omega} = \{ f \mid \text{из } (1) \text{ следует } \omega (\mu_j(0)) = \Psi_i(\mu), j \in \{1, 2, \dots, n\} \},$$

$$\omega \in \Omega, i \in \{0, 2, 3, \dots\}.$$

Мы используем множества \tilde{M}_i

$$\tilde{M}_i = \{ f \mid \text{из } (1) \text{ следует}, \exists \Psi_i(\mu_i), j \in \{1, 2, \dots, n\} \},$$

 $i\in\{0,2,3,\ldots\}.$ Через $R_i^{(e)}$ обозначим множество автоматов f из \tilde{M}_i таких, что, если f существенно зависит более чем от одной переменной, то его коэффициенты μ_i в разложении (1) удовлетворяют равенству

$$\Psi_i(\mu_j) = 0, \ j \in \{1, 2, \dots, n\}, \ i \in \{0, 2, 3, \dots\}.$$

Через $R_i^{(d)}$ обозначим множество автоматов f из \tilde{M}_i , для которых в разложении (1) не более одного j такого, что $\Psi_i\left(\mu_j\right) \neq 0$ и, если такой jнайдется, то $\mu_j(0) \neq 0$ и для любого $j', j' \in \{1, 2, ..., n\} \setminus \{j\}$, выполнено $\mu_{i'}(0) = 0.$

Положим:

$$J_k = \left\{ T_a, V_1, V_p, P_s, M_1, M_{i,\omega}, R_i^{(\rho)} \mid a \in E_k, s \in \{1, 2, \dots, l\}, i \in \{0, 2, 3, \dots\}, \omega \in \Omega, \rho \in \{e, d\} \right\}.$$

Замыкание множества M по операциям композиции обозначаем K(M). Множество M линейных автоматов называется замкнутым классом, если K(M)=M. Если $K(M)=\mathfrak{L}_k$, то M полно в \mathfrak{L}_k . Замкнутый класс является максимальным (предполным), если он не совпадает с \mathfrak{L}_k , но, добавляя к нему любой автомат из $\mathfrak{L}_k \setminus M$, получаем полное множество. В работе [5] найдены все максимальные подклассы для случая простого к. В настоящей работе максимальные подклассы построены в общем случае, что уточняет результат работы [6].

Теорема 1. Множество J_k состоит из максимальных подклассов \mathfrak{L}_k и содержит все его максимальные подклассы.

Для заданного множества M линейных автоматов из \mathfrak{L}_k элемент Θ множества J_k называется максимальным надклассом для M, если $M\subseteq$ Θ . Анализируя множество J_k , получаем следующие утверждения.

Теорема 2. Множество $M, M \subseteq \mathfrak{L}_k$, имеет конечное число максимальных надклассов в точности тогда, когда М содержит линейный автомат с не менее чем двумя существенными переменными, и в М найдется f такой, что

$$U(f) \setminus E_k \neq \emptyset$$
.

Теорема 3. Существует алгоритм, с использованием которого время проверки конечности числа максимальных надклассов для данного множества M, состоящего из r линейных автоматов, каждый из которых зависит не более чем от n переменных, по порядку не превосходит rn.

Список литературы

- [1] Гилл А., Линейные последовательностные машины, пер. с англ., «Наука», Москва, 1974, 288 с.
- [2] Кудрявцев В.Б., Алешин С.В., Подколзин А.С., Введение в теорию автоматов, «Наука», Москва, 1985, 320 с.
- [3] Лидл Р., Нидеррайтер Г., Конечные поля, пер. с англ., «Мир», Москва, 1988, 430 с.
- [4] Часовских А.А., "О полноте в классе линейных автоматов", *Математи- ческие вопросы кибернетики*, 1991, № 3, 140–166
- [5] Часовских А.А., "Условия полноты линейно-р-автоматных функций", Интеллектуальные системы, 18:3 (2014), 203–252
- [6] Часовских А.А., "Приведенные критериальные системы предполных классов в классах линейных автоматов над конечными полями", *Интеллекту-альные системы*, **22**:4 (2018), 115–134

On the number of maximum overclasses in the linear automata class

Chasovskikh A.A.

Updated maximale subclasses lists in linear automata classes over finite fields. A criterion is found for the finiteness of the number of precomplete overclasses for a given set of linear automata.

Keywords: finite automaton, linear automaton, operation of composition, feedback, completeness, closed class, maximum subclass, finite field.