Некорректность интуиционистской логики относительно L-реализуемости.

Коновалов А. Ю.

Для каждого счетного расширения L языка арифметики определяется абсолютная L-реализуемость предикатных формул. Доказывается, что интуиционистская логика не является корректной относительно этих семантик.

Ключевые слова: конструктивная семантика, реализуемость, абсолютная реализуемость, формальная арифметика, интуиционистская логика.

Будем считать, что язык формальной арифметики LA содержит обозначения для всех примитивно рекурсивных функций, а также константы для обозначения всех натуральных чисел. Расширение LA' языка LA получается добавлением к LA предикатных символов P_i^n и функциональных символов f_i^n для всех $i \geq 0, \ n \geq 1$. Валентность символов P_i^n и f_i^n полагается равной n. Формулы языка LA' строятся обычным образом из атомов и логических констант \top, \bot при помощи логических связок \land, \lor, \to и кванторов \exists, \forall . Выражение $\neg A$ условимся рассматривать как сокращение для формулы $A \to \bot$. Будем считать, что фиксирована геделева нумерация языка LA'. Формулу языка LA' с геделевым номером z обозначаем через Φ_z . Через $\lceil \Phi \rceil$ обозначаем геделев номер формулы Φ .

Фиксируем расширение L языка LA и интерпретацию \mathcal{N}_L языка L такие, что L — подъязык языка LA', а интерпретация \mathcal{N}_L является продолжением стандартной интерпретацией языка LA. Униформизацией формулы $\Phi(x_1, \ldots, x_n, y)$ языка L, не содержащей параметров, отличных от x_1, \ldots, x_n, y , будем называть формулу

$$\Phi(x_1, \ldots, x_n, y) \wedge (\forall y_1 < y) \neg \Phi(x_1, \ldots, x_n, y_1),$$

которую обозначим $\Phi^U(x_1,\ldots,x_n,y)$. Каждая такая формула задает частичную функцию $f:\mathbb{N}^n\to\mathbb{N}$, где $f(k_1,\ldots,k_n)=k$, если и только

если $\mathcal{N}_L \models \Phi^U(k_1,\dots,k_n,k)$, т. е. формула $\Phi^U(k_1,\dots,k_n,k)$ истинна в интерпретации \mathcal{N}_L . Через I_n^L обозначаем множество геделев номеров формул языка L, не содержащих параметров отличных от x_1,\dots,x_n,y . Если $z \in I_n^L$, то посредством $\varphi_z^{L,n}$ обозначим n-местную частичную функцию, задаваемую формулой Φ_z^U . В выражениях вида $\varphi_z^{L,n}$ обычно будем опускать второй верхний индекс там, где он может быть восстановлен из контекста.

Будем говорить, что частичная функция $\psi(x_1,\ldots,x_n)$ определима в языке L формулой $A(x_1,\ldots,x_n,y)$ этого языка, если имеет место $(k_1,\ldots,k_n)=n \iff \mathcal{N}_L\models A(k_1,\ldots,k_n,n)$ для всех натуральных чисел k_1,\ldots,k_n,n . Отметим, что n-местная функция ψ определима в языке L тогда и только тогда, когда найдется натуральное число $z\in I_n^L$, для которого выполняется соотношение $\psi(x_1,\ldots,x_n)\simeq \varphi_z^{L,n}(x_1,\ldots,x_n)$.

Представляет интерес рассмотрение варианта конструктивной логики, основанного на использовании определимых в языке L функций как конструктивного способа получения одних реализаций из других. Понятие L-реализуемости для языка LA можно определить по аналогии с рекурсивной реализуемостью Клини [1, §82]. Однако нетрудно убедиться, что возникающая при этом семантика совпадает со стандартной классической семантикой языка LA. Поэтому более уместным представляется рассмотрение L-реализуемости сразу в контексте абсолютной реализуемости предикатных формул [2].

Предикатные формулы строятся обычным образом из атомов $P(v_1, \ldots, v_n)$, где P есть n-местная предикатная переменная, а v_1, \ldots, v_n — предметные переменные, при помощи логических констант \top , \bot , связок \wedge , \vee , \to и кванторов \forall , \exists .

Пусть фиксированы примитивно-рекурсивные двухместная функция c, которая взаимно однозначно нумерует все пары натуральных чисел, и одноместные обратные функции p_1 и p_2 , так что выполняются соотношения $p_1(c(x,y)) = x$ и $p_2(c(x,y)) = y$. В выражениях вида $p_1(t)$, $p_2(t)$ обычно будем опускать скобки.

Следуя [2], n-местным обобщенным предикатом будем называть всякую функцию типа $\mathbb{N}^n \to 2^{\mathbb{N}}$. Пусть A — предикатная формула, f — отображение, которое каждой предикатной переменной из A ставит в соответствие обобщенный предикат соответствующей валентности. В этом случае отображение f будем называть оценкой формулы A. Временно введем в язык логики предикатов константы для обозначения всех натуральных чисел. Формулы с этими константами будем называть предикатными формулами расширенного языка.

Для каждого натурального числа e, произвольной замкнутой предикатной формулы расширенного языка A и оценки f определим отношение $e \mathbf{r}_f^L A$ (число e реализует A при оценке f):

- 1) неверно $e \mathbf{r}_f^L \perp$;
- 2) верно $e \mathbf{r}_f^L \dot{\top}$;
- 3) $e \mathbf{r}_f^L P(a_1, \dots, a_n) \rightleftharpoons e \in f(P)(a_1, \dots, a_n)$, если P есть n-местная предикатная переменная;
 - 4) $e \mathbf{r}_f^L (\Phi \wedge \Psi) \rightleftharpoons \mathsf{p}_1 e \mathbf{r}_f^L \Phi \mathsf{H} \mathsf{p}_2 e \mathbf{r}_f^L \Psi;$
 - 5) $e \mathbf{r}_f^L (\Phi \vee \Psi) \rightleftharpoons (\mathsf{p}_1 e = 0 \text{ и } \mathsf{p}_2 e \mathbf{r}_f^L \Phi)$ или $(\mathsf{p}_1 e = 1 \text{ и } \mathsf{p}_2 e \mathbf{r}_f^L \Psi)$; 6) $e \mathbf{r}_f^L \exists x \Phi(x) \rightleftharpoons \mathsf{p}_2 e \mathbf{r}_f^L \Phi(\mathsf{p}_1 e)$;
- 7) $e \mathbf{r}_f^L \forall x_1, \dots, x_n (\Phi(x_1, \dots, x_n)) \rightarrow \Psi(x_1, \dots, x_n)) \rightleftharpoons e \in I_{n+1}^L$ и для всех¹ $s, a_1, \ldots, a_n \in \mathbb{N}$ верно

$$s \mathbf{r}_f^L \Phi(a_1,\ldots,a_n) \Longrightarrow ! \varphi_e^L(a_1,\ldots,a_n,s)$$
 и $\varphi_e^L(a_1,\ldots,a_n,s) \mathbf{r}_f^L \Psi(a_1,\ldots,a_n),$ если $n \geq 0$;

8) $e\mathbf{r}_f^L \forall x_1, \dots, x_n \Phi \rightleftharpoons e\mathbf{r}_f^L \forall x_1, \dots, x_n (\top \to \Phi)$, если n>0, формула Φ не начинается с квантора \forall , и логическая связка \to не является главной

Будем говорить, что замкнутая предикатная формула A является abсолютно L-реализуемой, если для любой оценки f формулы A найдется такое натуральное число e, что $e \mathbf{r}_f^L A$. По аналогии с определением примитивно рекурсивно реализуемой секвенции из работы С. Салехи [3] распространим на секвенции понятие абсолютной L-реализуемости.

$$e \mathbf{r}_f^L A(\overline{x}) \Rightarrow B(\overline{x}) \rightleftharpoons e \mathbf{r}_f^L \, \forall \overline{x} \, (A(\overline{x}) \to B(\overline{x})),$$

где $\overline{x} = x_1, \dots, x_n$. Будем говорить, что секвенция $A \Rightarrow B$ является абcoлютно L-peaлизуемой, если для любой оценки f предикатных формул A и B найдется такое натуральное число e, что $e \mathbf{r}_f^L A \Rightarrow B$.

Верна следующая теорема.

Теорема 1. Секвенция $T \to P(x) \Rightarrow P(x)$ не абсолютно L-реализуема.

Из теоремы 1 следует, что формула $\forall x ((\top \rightarrow P(x)) \rightarrow P(x))$ не является абсолютно L-реализуемой. Таким образом, справедлива следующая теорема.

Теорема 2. Интуиционистское исчисление предикатов не является корректным относительно семантики абсолютной L-реализуемости.

 $^{^{1}}$ Однако, если в списке x_{1}, \ldots, x_{n} на некоторых позициях i и j стоят одинаковые переменные x_i и x_j , то мы не допускаем рассмотрение тех списков a_1, \dots, a_n , в которых $a_i \neq a_j$.

Список литературы

- [1] Клини С. К. Введение в метаматематику. М.: ИЛ, 1957.
- [2] Плиско В. Е. Абслолютная реализуемость предикатных формул // Изв. АН СССР. Сер. матем. 1983. **47**, №2. 315–334.
- [3] Salehi S. Primitive recursive realizability and basic arithmetic // Bull. Symbol. Logic. 2001. 7, N 1. 147—148.

The intuitionistic logic is not sound with L-realizability. Konovalov A. Yu.

An absolute L-realizability of predicate formulas is introduced for all countable extensions L of the language of arithmetic. It is proved that the intuitionistic logic is not sound with this semantics.

Keywords: constructive semantics, realizability, absolute realizability, formal arithmetic, intuitionistic logic.