Об автоматной сложности классов Поста булевых функций

М. А. Кибкало

В статье рассматривается сложность автоматной реализации булевых функций и устанавливаются точные значения и асимптотические оценки функции Шеннона для замкнутых классов булевых функций, входящих в решетку Поста.

Ключевые слова: булева функция, детерминированный конечный автомат, автоматная сложность, замкнутый класс Поста, решетка Поста, функция Шеннона.

Введение

Наборы, на которых функция $f:E^n\to E$ принимает значение 1, можно рассматривать как слова конечного языка \mathcal{L}_f . Минимальное число состояний автомата, представляющего язык \mathcal{L}_f , называется автоматной сложностью функции f. Автоматной сложностью множества булевых функций называется максимальная автоматная сложность функции из этого множества. Значением функции Шеннона для класса булевых функций \mathcal{K} называется автоматная сложность множества $\mathcal{K}\cap P_2^n$ функций от n переменных из \mathcal{K} . В статье рассматривается сложность автоматной реализации булевых функций и устанавливаются точные значения и асимптотические оценки функции Шеннона для замкнутых классов булевых функций, входящих в решетку Поста.

Автор выражает глубокую благодарность академику В.Б. Кудрявцеву и проф. Д.Н. Бабину за ценные замечания и внимание к работе.

1. Основные определения

Через E обозначим множество $\{0,1\}, E^n$ — двоичный куб размерности n, E_q^n ($E_q^n \subseteq E^n, q=0,\ldots,n$) — q-й слой куба E^n . Через α_i обозначим i-ю координату набора $\bar{\alpha} \in E^n, i=1,\ldots,n$. Через P_2^n обозначим множество всех булевых функций от n переменных.

Определим детерминированный конечный автомат (ДКА) и инициальный конечный автомат (ИКА) согласно [2].

В произвольном конечном алфавите A определим класс конечных языков, содержащих слова длины n: $\mathcal{L}_n(A) = \{L \subseteq A^n\}$. Каждой $f \in P_2^n$ можно взаимно однозначно сопоставить конечный язык $L(f) \in \mathcal{L}_n(E)$ по следующему правилу: слово $\alpha_1 \dots \alpha_n \in L(f) \Leftrightarrow f(\tilde{\alpha}) = f(\alpha_1, \dots, \alpha_n) = 1, \ \alpha_i \in E, \ i = 1, \dots, n.$

Будем говорить, что ИКА $V_q(E,Q,E,\varphi,\psi,q)$ представляет $f\in P_2^n$, если он представляет $L(f)\in\mathcal{L}_n(E)$.

Сложностью $\mathbb{S}(V_q)$ ИКА V_q назовем число состояний в нем. Автоматной сложностью булевой функции $f \in P_2^n$ назовем наименьшую сложность ИКА, представляющего $L(f) \in \mathcal{L}_n(E)$: $\mathbb{S}(f) = \min_{V_q \sim L(f)} \mathbb{S}(V_q)$.

Пусть $\mathcal{K} \subseteq P_2$ — класс булевых функций, $\mathcal{K}(n) = \mathcal{K} \cap P_2^n$ — множество функций от n переменных из \mathcal{K} . Функцию $\mathbb{S}(\mathcal{K},n) = \max_{f \in \mathcal{K}(n)} \mathbb{S}(f,n)$ назовем функцией Шеннона класса \mathcal{K} . Заметим, что $\mathbb{S}(\mathcal{K},n)$ также является функцией Шеннона соответствующего класса конечных языков $\mathcal{L}_n(E)$.

Приведем обозначения замкнутых классов, введенных Постом в [8, 9] и их описания, приведенные в [1]

- C_i , $i=1,\ldots,4$ все булевы функции, все функции, сохраняющие 0 и/или 1.
- A_i , i = 1, ..., 4 все монотонные функции, все монотонные функции, сохраняющие 0 и/или 1.
- D_i , i=1,2,3 все самодвойственные α -функции, все монотонные самодвойственные функции, все самодвойственные функции.



Рис. 1.

- $F_1^\mu,\,\mu=2,\ldots,\infty$ все α -функции, удовлетворяющие условию $\langle \alpha^\mu \rangle.$
- $F_2^\mu,\,\mu=2,\ldots,\infty$ все монотонные α -функции, удовлетворяющие условию $\langle \alpha^\mu \rangle.$
- $F_3^\mu,\,\mu=2,\ldots,\infty$ все монотонные функции, удовлетворяющие условию $\langle \alpha^\mu \rangle.$
- $F_4^\mu, \ \mu=2,\dots,\infty$ все функции, удовлетворяющие условию $\langle \alpha^\mu \rangle.$

- $F_5^\mu,\,\mu=2,\ldots,\infty$ все α -функции, удовлетворяющие условию $\langle A^\mu \rangle.$
- F_6^μ , $\mu=2,\ldots,\infty$ все монотонные α -функции, удовлетворяющие условию $\langle A^\mu \rangle$.
- F_7^{μ} , $\mu = 2, \dots, \infty$ все монотонные функции, удовлетворяющие условию $\langle A^{\mu} \rangle$.
- $F_8^\mu, \ \mu=2,\ldots,\infty$ все функции, удовлетворяющие условию $\langle A^\mu \rangle.$
- L_i , $i = 1, \ldots, 5$ классы линейных функций.
- S_i , i = 1, 3, 5, 6 классы логических сумм.
- P_i , i = 1, 3, 5, 6 классы логических произведений.
- O_i , $i = 1, \ldots, 9$ классы констант и/или переменных.

Вышеперечисленные классы образуют решетку Поста, приведенную на рис. 1.

Теорема 1. Для любого $n \in \mathbb{N}$ и любого класса $\mathcal{K} \in \{C_1, C_2, C_3, C_4\}$ существуют $p \geqslant 0$ и функция максимальной сложности $f \in \mathcal{K}(n)$, автоматная сложность которой равна

$$\mathbb{S}(f) = \mathbb{S}(\mathcal{K}, n) = 2^{n-p} - 1 + \sum_{i=0}^{p} 2^{2^i} - p - 1,$$

где значение p для данного n однозначно вычисляется по формуле $p(n)=\min\{q\mid 2^{n-q-1}<2^{2^{q+1}}\}.$

Теорема 2. Для любого $n \in \mathbb{N}$ и любого класса $\mathcal{K} \in \{D_1, D_3\}$ существуют $p \geqslant 0$ и функция максимальной сложности $f \in \mathcal{K}$, автоматная сложность которой равна

$$\mathbb{S}(f) = \mathbb{S}(\mathcal{K}, n) = 2^{n-p} - 1 + \sum_{i=0}^{p} 2^{2^{i}} - p - 1 - u(n, p),$$

Следствие 1. Для любого класса $\mathcal{K} \in \{C_1, C_2, C_3, C_4, D_1, D_3\}$ выполнено

$$\frac{2^n}{n} \lesssim \mathbb{S}(\mathcal{K}, n) \lesssim 2 \cdot \frac{2^n}{n}.$$

Следствие 2. Для любого класса $\mathcal{K} \in \{C_1, C_2, C_3, C_4, D_1, D_3\}$ при $n=p+(1+\alpha)\cdot 2^p, \ \alpha\in (0,1]$ выполнено

$$\mathbb{S}(\mathcal{K}, n) \sim (1 + \alpha) \cdot \frac{2^n}{n}.$$

Теорема 3. Для любого $n \in \mathbb{N}$ и любого класса $\mathcal{K} \in \{F_i^{\infty}, i = 1,4,5,8\}$ существуют $p \geqslant 0$ и функция максимальной сложности $f \in \mathcal{K}$, автоматная сложность которой

$$\mathbb{S}(f) = \mathbb{S}(\mathcal{K}, n) = 2^{n-1-p} - 1 + \sum_{j=0}^{p} 2^{2^{j}} - p - 1 + \max(2^{n-2-p}, 2^{2^{p}} - 1) + u(i, n, p),$$

Следствие 3. Для любого класса $K \in \{F_i^{\infty}, i = 1, 4, 5, 8\}$ выполнено

$$\frac{3}{4} \cdot \frac{2^n}{n} \lesssim \mathbb{S}(\mathcal{K}, n) \lesssim \frac{3}{2} \cdot \frac{2^n}{n}$$
.

Следствие 4. Для любого класса $\mathcal{K} \in \{F_i^{\infty}, i=1,4,5,8\}$ при $n=(1+\alpha)\cdot 2^p+p, \ \alpha\in(0,1]$ выполнено

$$\mathbb{S}(\mathcal{K},n) \sim \frac{3(1+\alpha)}{4} \cdot \frac{2^n}{n}.$$

Следствие 5. Для любого класса $\mathcal{K} \in \{F_i^\mu, \ \mu \geqslant 2, \ i=1,4,5,8\}$ выполнено

$$\frac{3}{4} \cdot \frac{2^n}{n} \lesssim \mathbb{S}(\mathcal{K}, n) \lesssim 2 \cdot \frac{2^n}{n}.$$

Теорема 4. Для любого класса $\mathcal{K} \in \{A_1, A_2, A_3, A_4, D_2, F_i^2, i = 2, 3, 6, 7\}$ при $n = \alpha \binom{p}{\lfloor p/2 \rfloor} + p$, $\alpha \in \left(\frac{1}{2}, 1\right]$ имеет место асимптотическая оценка

$$\mathbb{S}(\mathcal{K}, n) \sim \frac{2\alpha c}{\sqrt{\log n}} \cdot \frac{2^n}{n}, \ c = \sqrt{2/\pi},$$

 ${\it rde}\ p(n) = \min\left\{q \mid 2^{n-q} \leqslant 2^{\left(\lfloor q/2 \rfloor\right) + q \bmod 2} \right\}\ {\it dns}\ {\it knaccos}\ A_1, A_2, A_3, A_4, D_2\ u\ p(n) = \min\left\{q \mid 2^{n-q} \leqslant 2^{\left(\lceil (q+1)/2 \rceil\right)} \right\}\ {\it dns}\ {\it knaccos}\ F_i^2,\ i=2,3,6,7.$

Следствие 6. Для любого класса $\mathcal{K} \in \{A_1, A_2, A_3, A_4, D_2, F_i^2, i = 2, 3, 6, 7\}$ выполнено

$$\frac{c}{\sqrt{\log n}} \cdot \frac{2^n}{n} \lesssim \mathbb{S}(\mathcal{K}, n) \lesssim \frac{2c}{\sqrt{\log n}} \cdot \frac{2^n}{n}.$$

Теорема 5. Для любого класса $\mathcal{K} \in \{F_i^{\infty}, i=2,3,6,7\}$ при $n=\alpha\binom{p}{|p/2|}+p, \ \alpha\in\left(\frac{1}{2},1\right]$ имеет место асимптотическая оценка

$$\mathbb{S}(\mathcal{K}, n) \sim \frac{3\alpha c}{2\sqrt{\log n}} \cdot \frac{2^n}{n}, \ c = \sqrt{2/\pi},$$

$$\operatorname{ede}\,p(n)=\min\Big\{q\mid 2^{n-q-1}\leqslant 2^{\left(\lfloor q/2\rfloor\right)+q\bmod 2}\Big\}.$$

Следствие 7. Для любого класса $K \in \{F_i^{\infty}, i = 2, 3, 6, 7\}$ выполнено

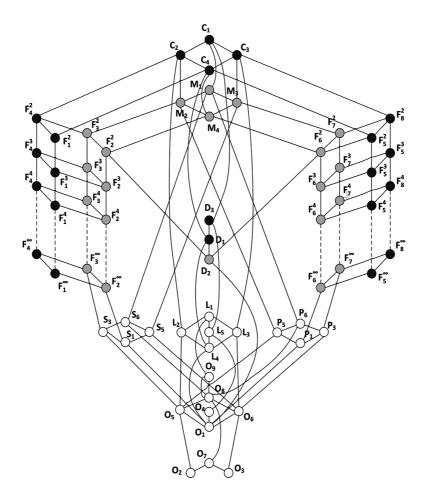
$$\frac{3c}{4\sqrt{\log n}} \cdot \frac{2^n}{n} \lesssim \mathbb{S}(\mathcal{K}, n) \lesssim \frac{3c}{2\sqrt{\log n}} \cdot \frac{2^n}{n}.$$

Следствие 8. Для любого класса $\mathcal{K} \in \{F_i^\mu, \ \mu \geqslant 3, \ i=2,3,6,7\}$ выполнено

$$\frac{3c}{4\sqrt{\log n}} \cdot \frac{2^n}{n} \lesssim \mathbb{S}(\mathcal{K}, n) \lesssim \frac{2c}{\sqrt{\log n}} \cdot \frac{2^n}{n}.$$

Приведенные выше утверждения дополняет теорема 6, опирающаяся на известные оценки сложности. Доказательства этого утверждения в данной работе мы приводить не будем ввиду его простоты.

Теорема 6. Для следующих классов достижимы точные значения автоматной сложности:



- классы первого пояса
- 🔘 классы второго пояса
- 🔾 классы третьего пояса

Рис. 2.

- 1) $S(L_i, n) = 2n, i = 1, 2, 3, 4, 5.$
- 2) $\mathbb{S}(S_i, n) = 2n, i = 1, 3, 5, 6.$
- 3) $\mathbb{S}(P_i(n)) = n+1, i=1,3,5,6.$

- 4) $\mathbb{S}(O_i(n)) = n+1, i=1,2,4,5,6,7,8,9.$
- 5) $\mathbb{S}(O_3(n)) = 1$.

Таким образом, имеет место разбиение решетки классов Поста на три пояса в соответствие с вышеприведенной асимптотикой автоматной сложности (на рис. 2 пояса обозначены черным, серым и белым цветами). Для классов первого и третьего пояса устанавливаются точные значение автоматной сложности (см. формулировки теорем выше).

2. Классы первого пояса: $C_1, C_2, C_3, C_4, D_1, D_3,$ $F_i^{\infty}, F_i^{\mu}, \mu \geqslant 2, i = 1, 4, 5, 8$

Назовем подавтоматом пиестерку $V=(A,B,Q,P,\varphi,\psi)$, где $P\subseteq Q$, а $\varphi:\ P\times A\to Q$ и $\psi:\ P\times A\to B$ — частично определенные функции перехода и выхода.

Можно построить ИКА \tilde{V} из нескольких подавтоматов $V_i = (A, B, Q_i, P_i, \varphi_i, \psi_i), i = 1, \ldots, k$ с непересекающимися множествами P_i , положив $\tilde{Q} = \bigcup_{i=1}^n Q_i$, выбрав начальное состояние $\tilde{q} \in \tilde{Q}$ и доопределив функции φ и ψ на множество $\bigcup_{i=1}^k Q_i \setminus \bigcup_{i=1}^k P_i$.

Назовем (полным) двоичным прямым деревом высоты l подавтомат T, диаграмма которого есть (полное) ориентированное двоичное дерево высоты l, переходы в котором делаются из состояний слоя T_i в состояния слоя T_{i+1} , $i=0,\ldots,l-1$.

Назовем обратным деревом высоты p подавтомат R, диаграмма которого есть ориентированное дерево высоты p, переходы в котором делаются из состояний слоя R_i в состояния слоя $R_{\max(i-1,0)}$, $i=0,\ldots,p$.

При построении автомата путем объединения прямого и обратного деревьев начальным состоянием будет корень прямого дерева, а тупиковым состоянием — корень обратного дерева.

Для ИКА $V_q = (E,Q,E,\varphi,\psi,q)$ и $k \in \mathbb{N}$ доопределим функции φ и ψ на $Q \times A^k$ так, что для $p \in Q$, $\bar{\alpha} \in A^k$, $\bar{\alpha} = \{\alpha_1,\ldots,\alpha_k\}$ выполнено $\varphi(p,\bar{\alpha}) = \varphi(\ldots\varphi(\varphi(p,\alpha_1),\alpha_2),\ldots\alpha_k)$ и $\psi(p,\bar{\alpha}) = \psi(\ldots\varphi(\varphi(p,\alpha_1),\alpha_2),\ldots\alpha_k)$.

l-м слоем $Q_l, Q_l \subseteq Q$ автомата V_q назовем множество $\{\varphi(q, \bar{\alpha}), \ \bar{\alpha} \in E^l\}$.

Будем говорить, что состояние $p\in Q$ распознает набор $\bar{\alpha}\in E_2^l,$ если $\psi(p,\bar{\alpha})=1.$

Назовем *i*-суффиксом набора $\bar{\alpha} \in E^n$, $\bar{\alpha} = \{\alpha_1, \dots, \alpha_n\}$ набор $\bar{\beta} \in E^i$, $\bar{\beta} = \{\alpha_{n-i+1}, \dots, \alpha_n\}$ и *i*-суффиксом функции $f \in P_2^n$ функцию $g(x_{n-i+1}, \dots, x_n) = f(\alpha_1, \dots, \alpha_{n-i}, x_{n-i+1}, \dots, x_n)$ для $i = 0, \dots, n$ и любых $\alpha_1, \dots, \alpha_{n-i} \in E$.

Множество i-суффиксов функций из $\mathcal{K}(n)\subseteq P_2^n$ обозначим через $\mathcal{K}_i(n).$

Очевидна следующая верхняя оценка функции Шеннона для класса $\mathcal{K} \subseteq P_2$.

$$\mathbb{S}(\mathcal{K}, n) \leqslant \sum_{i=0}^{n} \min(2^{i}, \underline{\mathcal{K}_{n-i}(n)}) \tag{*}$$

Схема доказательства теорем для класса $\mathcal K$ выглядит следующим образом:

- 1) Из двух подавтоматов строится автомат, представляющий специальную функцию из \mathcal{K} . Первый подавтомат является полным двоичным прямым деревом T высоты l, листья $t_l(\bar{\alpha})$ которого соответствуют наборам $\bar{\alpha} \in E^l$, а второй обратным деревом R высоты p, листья которого $r_p(f)$ соответствуют функциям $f \in P_2^p p$ -суффиксам функций из некоторого множества $\tilde{\mathcal{K}}(n) \subseteq \mathcal{K}(n)$.
- 2) Доказывается, что этот автомат имеет максимальную сложность в $\tilde{\mathcal{K}}(n)$. Для некоторых классов первого пояса решётки Поста $\tilde{\mathcal{K}}(n)$ совпадает с $\mathcal{K}(n)$, и, следовательно, удается найти точное значение функции Шеннона. Для второго пояса $\tilde{\mathcal{K}}(n)$ содержит функции, сложность которых близка к максимально возможной.
- 3) Находится асимптотика функции Шеннона класса \mathcal{K} и асимптотические значения некоторых параметров построенного автомата.

Теорема 1 и следствия 1, 2 для P_2 (C_1 в нотации Поста) доказаны в [3]. При этом строится автомат, представляющий самую сложную функцию из P_2^n . Автомат представляет собой полное прямое дерево T высоты l, листья которого соединены с листьями обратного дерева R высоты $p,\ n=l+p+1$. Обратное дерево также является полным, то есть $\tilde{\mathcal{K}}(n)=P_2^n$ и $\left|\frac{\mathcal{K}_p(n)}{\mathcal{K}_p(n)}\right|=|P_2^p|-1$. Листья T (состояния слоя T_l) соединяются с листьями R (состояниями слоя R_p) так, что все состояния построенного автомата являются достижимыми, и автомат не содержит эквивалентных состояний за исключением состояния, эквивалентного тупиковому, в каждом из p+1 слоев обратного дерева. Обозначим множество таких состояний через Z_p .

Для такого автомата доказаны следующие свойства и соотношения $(f - \phi)$ ункция, представляемая этим автоматом):

$$\mathbb{S}(f) = \mathbb{S}(C_1(n)) = 2^{n-p} - 1 + \sum_{i=0}^{p} 2^{2^i} - p - 1,$$
$$\frac{2^n}{n} \lesssim \mathbb{S}(C_1, n) \lesssim 2 \cdot \frac{2^n}{n}.$$

Обратное дерево высоты p используется при $2^p + p \le n < 2^{p+1} + p + 1$. Число листьев прямого и обратного деревьев связаны соотношением $|R_p|/2 \le T_l < |R_p|^2$.

Для $n = p + (1 + \alpha) \cdot 2^p$, $\alpha \in (0, 1]$ выполнено $\mathbb{S}(C_1, n) \sim (1 + \alpha) \cdot \frac{2^n}{n}$. Для числа переменных и высоты обратного дерева выполнено:

$$p = \log n - \log(1 + \alpha) + O\left(\frac{\log n}{n}\right).$$

Очевидно, что эти рассуждения применимы и к классам C_2, C_3 и C_4 . Достаточно положить $\varphi(t_l(\bar{0}),0)=r_p(0)$ и $\varphi(t_l(\bar{1}),1)=r_p(1)$, то есть, соединить нулевым ребром состояние из T_l , соответствующее нулевому набору из E^l с состоянием из R_p , соответствующим тождественному нулю из P_2^p , и единичным ребром — состояние из T_l , соответствующее единичному набору из E^l с состоянием из R_p , соответствующим тождественной единице из P_2^p .

Доказательство теоремы 2 (классы D_1, D_3).

Используется та же конструкция автомата, что и в теореме 1. Самодвойственность функций из D_3 накладывает ограничения на способ соединения состояний из T_l и R_p . Состояния из T_l , соответствующие двойственным наборам $\bar{\alpha}$ и $\bar{\alpha}^*$ из E^l должны соединяться с

состояниями из R_p , соответствующими двойственным функциям из P_2^n : $\varphi(t_l(\bar{\alpha}),\beta)=\varphi(t_l(\bar{\alpha}^*),\beta^*)^*$, $\beta\in E$. При этом, для достижимого состояния $r_p(f)\in T_l$, где $f\in D_3(p)$, существует такой набор $\bar{\alpha}\in E_2^l$, что $\varphi(t_l(\bar{\alpha}),0)=\varphi(t_l(\bar{\alpha}),1)=r_p(f)$. То есть, такое состояние должно соединяться, по крайней мере, с двумя состояниями из T_l .

Утверждение 1. При $|R_p|/2 < T_l < |R_p|^2$ ($2^p + p < n < 2^{p+1} + p + 1$) можно построить такое соединение T_l и R_p , что все состояния из R_p будут достижимы, и автомат не будет содержать бесполезных и эквивалентных состояний вне множества Z_p .

Утверждение 2. При $|R_p|/2 = T_l$ ($2^p + p = n$) число недостижимых состояний в R_p не меньше максимума из числа недостижимых состояний, соответствующих функциям из $D_3(p)$ и числа достижимых состояний, соответствующих функциям из $D_3(p)$.

Следовательно, число недостижимых состояний в R_p не меньше $|D_3(p)|/2=2^{2^p-1}$. Для таких p и n можно построить соединение T_l и R_p , оставляющее недостижимыми ровно $|D_3(p)|/2$ состояний из R_p , соответствующих функциям из $D_3(p)$. Следующее утверждение обеспечивает достижимость всех состояний из R_{p-1} .

Утверждение 3. Любая функция $f \in P_2^{p-1}$ является (p-1)-суф-фиксом некоторой функции $f \in P_2^p \setminus D_3(p)$.

Для класса D_1 проводим рассуждения, аналогичные рассуждениям для классов C_2 , C_3 и C_4 . Теорема 2 доказана.

Очевидно, что следствия 1, 2 верны и для классов D_1, D_3 .

Доказательство теоремы 3, следствий 3, 4, 5 (классы D_1, D_3).

Обозначим через $\mathcal{H}^{n,i}_t: P^n_2 \to p^{n+1}_2, \ i=0,1, \ t=1,\dots,n+1$ отображение, для которого выполнено

$$\mathcal{H}_{t}^{n,i}(f)(x_{1},\ldots,x_{n+1}) = \begin{cases} f(x_{1},\ldots,x_{t-1},x_{t+1},\ldots,x_{n+1}), & x_{t-1} = i; \\ 1-i, & x_{t-1} = 1-i. \end{cases}$$

Для $\mathcal{K}\subseteq P_2^n$ обозначим $\mathcal{H}^{n,i}_t(\mathcal{K})=\{\mathcal{H}^{n,i}_t(f),\ f\in\mathcal{K}(n)\},\ i=0,1$ и $\mathcal{H}^{n,i}(\mathcal{K})=\bigcup_{t=1}^{n+1}\mathcal{H}^{n,i}_t(\mathcal{K}).$

Операция $\mathcal{H}_t^{n,i}$ вызывает вставку дополнительной переменной после x_t (в начале при t=0), причем функция $\mathcal{H}_t^{n,i}(f)$ может быть равна i, только если значение этой переменной равно i.

Если Q_t-t -й слой автомата V_q , через Q_t' обозначим множество $Q_t\setminus Q_n$ нетупиковых состояний из $Q_t,\,t=0,\ldots,n-1$. Считаем $Q_n=Q_n'$.

Утверждение 4. Для любой $f \in P_2^n$ выполнено

$$\mathbb{S}(\mathcal{H}^{n,1}_t(f)) = \mathbb{S}(f) + \min_{V_q \sim L(f)} \max_{t=0,\dots,n} |Q_t'|.$$

Доказательство. Рассмотрим приведенный автомат $V_q(E,Q,E,\varphi,\psi,q) \sim L(f)$ и $t=0,\dots,n$. Автомат \bar{V}_q , представляющий $\mathcal{H}_t^{n,1}(f)$ можно построить из V_q добавлением слоя $\overline{Q'_{t+1}}$ после слоя Q'_t , причем переходы из состояний Q'_t по 1 будут делаться в состояния $\overline{Q'_{t+1}}$, а по 0— в тупиковое состояние.

При t < n автомат $\bar{V}_q(E, \bar{Q} = Q \cup \overline{Q'_{t+1}}, E, \bar{\varphi}, \bar{\psi}, q) \sim L(\mathcal{H}^{n,1}_t(f))$ строится следующим образом: для любого $r \in Q'_t$ в автомат добавляется состояние $h(r) \in \overline{Q'_{t+1}}$. Функции перехода $\bar{\varphi}$ и выхода $\bar{\psi}$ определяются так:

$$\bar{\varphi}(r,i) = \begin{cases} h(r), \text{ если } r \in Q'_t, \ i = 1, \\ r_{n,0}, \text{ если } r \in Q'_t, \ i = 0, \\ \varphi(h^{-1}(r),i), \text{ если } r \in \overline{Q'_{t+1}}, \\ \varphi(r,i), \text{ иначе.} \end{cases}$$

$$\bar{\psi}(r,i) = \begin{cases} 0, \text{ если } r \in Q'_t, \\ \psi(h^{-1}(r),i), \text{ если } r \in \overline{Q'_{t+1}}, \\ \psi(r,i), \text{ иначе.} \end{cases}$$

При t=n тупиковое состояние $r_{n,0}\in Q_n$ дублируется и перестает быть тупиковым. Новым тупиковым состоянием становится $h(r_{n,0})$. Функции $\bar{\varphi}$ и $\bar{\psi}$ определяются так:

$$\bar{\varphi}(r,i) = \left\{ \begin{array}{l} h(r_{n,0}), \ \text{если} \ r = r_{n,0}, h(r_{n,0}), \\ h(r_{n,0}), \ \text{если} \ \varphi(r,i) = r_{n,0}, \ \psi(r,i) = 0, \ r \in Q \setminus Q_n, \\ r_{n,0}, \ \text{если} \ \varphi(r,i) = r_{n,0}, \ \psi(r,i) = 1, \ r \in Q \setminus Q_n, \\ \varphi(r,i), \ \text{иначе}. \end{array} \right.$$

$$ar{\psi}(r,i) = \left\{ egin{array}{ll} 1, \ {
m ec}$$
ли $r=r_{n,0}, \ i=1, \\ 0, \ {
m uhaqe}. \end{array}
ight.$

Очевидно, что построенный автомат также будет приведенным. Сложность построенного автомата будет наибольшей, если мы дублируем слой, содержащий наибольшее число состояний, то есть при таком t, что $|Q_t'| = w(V_q)$. Утверждение доказано.

Утверждение 5. Для любой $f \in P_2^n$ выполнено

$$\mathbb{S}(\mathcal{H}_t^{n,0}(f)) \leqslant \mathbb{S}(f) + \min_{V_q \sim L(f)} \max_{t=0,\dots,n} |Q_t'| + n.$$

Доказывается аналогично предыдущему утверждению. Но, в силу несимметричности относительно 0 и 1 определения представимости функции конечным автоматом, может потребоваться добавление цепочки состояний, компенсирующих эту несимметричность. Несимметричность состоит в том, что состояние, не распознающее ни один из суффиксов набора из P_2^n , считается эквивалентным тупиковому состоянию. В то же время для состояний, распознающих все возможные суффиксы наборов из P_2^n , вообще говоря, не определяется эквивалентое «антитупиковое» состояние.

Доказательство теоремы 3.

Автоматы, рассматриваемые в статье, содержат полные прямые и обратные деревья, и применение операций $\mathcal{H}_t^{n,1}$ и $\mathcal{H}_t^{n,0}$ вызывает одинаковые изменения их топологии.

Очевидно, что отображения $\mathcal{H}^{n,0}$ и $\mathcal{H}^{n,1}$ сохраняют такие свойства булевых функций, как монотонность и сохранение нуля или единицы. Следовательно,

$$F_1^{\infty}(n+1) = \mathcal{H}^{n,0}(C_4(n)), \quad F_2^{\infty}(n+1) = \mathcal{H}^{n,0}(A_4(n)),$$

$$F_3^{\infty}(n+1) = \mathcal{H}^{n,0}(A_1(n)), \quad F_4^{\infty}(n+1) = \mathcal{H}^{n,0}(C_1(n)),$$

$$F_5^{\infty}(n+1) = \mathcal{H}^{n,1}(C_4(n)), \quad F_6^{\infty}(n+1) = \mathcal{H}^{n,1}(A_4(n)),$$

$$F_7^{\infty}(n+1) = \mathcal{H}^{n,1}(A_1(n)), \quad F_8^{\infty}(n+1) = \mathcal{H}^{n,1}(C_1(n)).$$
(**)

Утверждение 6. Для $\tilde{f} \in P_2^n$, представляемой автоматом максимальной сложности (доказательство теоремы 1) существует такое $\tilde{t} \in [0,n]$, что

$$\mathbb{S}(\mathcal{H}^{n,1}_{\tilde{t}}(\tilde{f}), n+1) = \mathbb{S}(F_8^{\infty}(n+1)) = \mathbb{S}(F_5^{\infty}(n+1)) \quad u$$
$$\mathbb{S}(\mathcal{H}^{n,0}_{\tilde{t}}(\tilde{f}), n+1) = \mathbb{S}(F_4^{\infty}(n+1)) = \mathbb{S}(F_1^{\infty}(n+1)).$$

Доказательство. Из (*) следует, что автомат максимальной сложности, построенный при доказательстве теоремы 1, содержит слой максимальной мощности среди автоматов, представляющих функции из P_2^n . Возможны два случая:

- а) $n=p+2^p$ максимальным будет последний слой обратного дерева $Q_{\tilde{t}}'$, $\tilde{t}=n-p$, содержащий $2^{2^p}-1$ состояние (и одно эквивалентное тупиковому);
- б) $n \neq p+2^p$ максимальным будет последний слой прямого дерева $Q_{\tilde{t}}',\, \tilde{t}=n-p-1,$ содержащий 2^{n-p-1} состояний.

Добавление к самому сложному приведенному автомату, представляющему функцию из P_2^n , слоя максимальной мощности дает самый сложный автомат, представляющий функцию из $F_8^\infty(n+1)$. Следовательно, $\mathbb{S}(\mathcal{H}_{\tilde{t}}^{n,1}(\tilde{f}),n+1)=\mathbb{S}(F_8^\infty(n+1))$.

Аналогично для $\mathcal{H}_t^{n,0}$ и класса $F_4^\infty(n+1)$ с той разницей, что в случае а) к слою $Q_{\tilde{t}}'$ будет добавлено одно состояние, из которого переход по 0 делается в тупиковое состояние, а по 1- в состояние, распознающее все наборы из P_2^{n-t} . Следовательно, $\mathbb{S}(\mathcal{H}_{\tilde{t}}^{n,0}(\tilde{f}))=\mathbb{S}(F_4^\infty(n+1))$.

Очевидно, что функцию \tilde{f} можно выбрать так, чтобы она была α -функцией. Получаем $\mathbb{S}(\mathcal{H}^{n,1}_{\tilde{t}}(\tilde{f}))=\mathbb{S}(F_5^\infty(n+1))$ и $\mathbb{S}(\mathcal{H}^{n,0}_{\tilde{t}}(\tilde{f}))=\mathbb{S}(F_1^\infty(n+1))$. Утверждение доказано.

Из утверждения 6 непосредственно следует теорема 3.

Очевидно следующее утверждение, из которого выводятся следствия 3–5.

Утверждение 7. Для $\tilde{f} \in P_2(n)$, представляемой автоматом максимальной сложности выполнено

$$\mathbb{S}(\tilde{f}) \sim 2 \cdot |Q'_{\tilde{t}}| + |Q'_{\tilde{t}+1}| \ u \ \mathbb{S}(\mathcal{H}^{n,i}_{\tilde{t}}(\tilde{f})) \sim 3 \cdot |Q'_{\tilde{t}}| + |Q'_{\tilde{t}+1}|, \ i \in E.$$

Следствие 5 выводится из следствий 1, 3 и того, что $F_i^\mu \supseteq F_i^\infty$ для всех $\mu \geqslant 2, \ i=1,4,5,8.$

3. Классы второго пояса: $A_1, A_2, A_3, A_4, D_2, F_i^2$, $F_i^{\infty}, F_i^{\mu}, \mu \geqslant 3, i = 2, 3, 6, 7$

Для построения автоматов с большой сложностью, представляющих монотонные функции, введем понятие монотонного вложения — специального отображения двоичного куба в множество монотонных булевых функций.

Для $l,p\in\mathbb{N}$ назовем монотонным (l,p)-вложением отображение $\mu_{l,p}: E^l\to A_1(p)$, такое что для любых $\bar{\alpha},\bar{\beta}\in E^l, \; \bar{\alpha}\geqslant \bar{\beta}, \; \bar{\gamma}\in E^p$ выполнено $\mu_{l,p}(\bar{\alpha})(\bar{\gamma})\geqslant \mu_{l,p}(\bar{\beta})(\bar{\gamma}). \; A_1(p)$ — множество монотонных булевых функций от p аргументов в нотации Поста.

Утверждение 8. Пусть $\mu_{l,p}$ — монотонное (l,p)-вложение. Тогда функция $f_{l,p}: E^{l+p} \to E, f_{l,p}(\alpha_1, \ldots, \alpha_l, \gamma_1, \ldots, \gamma_p) = \mu_{l,p}(\alpha_1, \ldots, \alpha_l)$ $(\gamma_1, \ldots, \gamma_p)$ будет монотонной.

Назовем монотонное (l,p)-вложение $\mu_{l,p}$ (l,p,F)-вложением, если $\mu_{l,p}(E^l)\subseteq F$ для некоторого множества $F\subseteq A_1(p)$ и (l,p,F_0,F_1) -вложением, если $\mu_{l,p}(\{\bar{\alpha}\in E^l\mid \alpha_1=i\})\subseteq F_i$ для некоторых множеств $F_i\subseteq A_1(p),\ i=0,1.$

Для (l,p,F_0,F_1) -вложения $\mu_{l,p}$ естественным образом определяются $(l-1,p,F_0)$ -вложение $\mu_{l,p,0}$ и $(l-1,p,F_1)$ -вложение $\mu_{l,p,1}$. Для всех $\alpha_j,\gamma_k\in E,\ j=2,\ldots,l,\ k=1,\ldots,p$ верно

$$\mu_{l,n,0}(\alpha_2,\ldots,\alpha_l)(\gamma_1,\ldots,\gamma_p) \leqslant \mu_{l,n,1}(\alpha_2,\ldots,\alpha_l)(\gamma_1,\ldots,\gamma_p).$$
 (***)

И наоборот, если для $(l-1,p,F_0)$ -вложения $\mu_{l,p,0}$ и $(l-1,p,F_1)$ -вложения $\mu_{l,p,1}$ выполнено (***), можно определить монотонное (l,p,F_0,F_1) -вложение $\mu_{l,p}$.

Для множества $F \subseteq E_q^p, q = 0, \ldots, p$ положим $F^> = \bigcup_{\bar{\beta} \in F} \{\bar{\alpha} \in E^p \setminus F \mid \bar{\alpha} > \bar{\beta}\}$ и $F^< = \bigcup_{\bar{\beta} \in F} \{\bar{\alpha} \in E^p \setminus F \mid \bar{\alpha} < \bar{\beta}\}$. Обозначим через $\mathcal{F}(F) \subseteq P_2^p$ множество булевых функций, все нижние единицы которых лежат в F. Через $\mathcal{G}(F) \subseteq P_2^p$ обозначим множество функций вида $\mathcal{G}(f) = f \vee \chi(F^>)$, где $f \in F$, а χ — характеристическая функция.

вида $\mathcal{G}(f)=f\vee\chi(F^>)$, где $f\in F$, а χ — характеристическая функция. Перенумеруем элементы множества F от $\bar{\gamma}_1$ до $\bar{\gamma}_{|F|}$. Обозначим через $\nu^p_{\bar{\gamma}}\in A_1(p)$ функцию, для которой $\bar{\gamma}\in E^p$ является единственной нижней единицей. Для $l=1,\ldots,|F|$ назовем монотонное

 $(l, p, \mathcal{F}(F))$ -вложение $\mu_{l,p}$ каноническим, если для любого $\bar{\alpha} \in E^l$ выполнено $\mu_{l,p}(\alpha_1, \dots, \alpha_l)(\gamma_1, \dots, \gamma_p) = \bigvee_{\alpha_i=1} \nu^p_{\bar{\gamma}_1}(\gamma_1, \dots, \gamma_p).$

Назовем монотонное $(l, p, \mathcal{F}(F_0), \mathcal{F}(F_1))$ -вложение $\mu_{l,p}$ каноническим $(|F_0| = |F_1|, F_0$ и F_1 могут лежать в разных слоях E^p), если вложения $\mu_{l,p,0}$ и $\mu_{l,p,1}$ являются каноническими и выполнено условие (***).

Аналогично определяются канонические $(l,p,\mathcal{G}(F))$ - и $(l,p,\mathcal{G}(F_0),\mathcal{G}(F_1))$ -вложения.

Схема доказательства теорем для класса из второго пояса $\mathcal K$ выглядит следующим образом:

- 1) Из двух подавтоматов строится автомат, представляющий специальную функцию из \mathcal{K} . Первый подавтомат является полным двоичным прямым деревом T высоты l, листья $t_l(\bar{\alpha})$ которого соответствуют наборам $\bar{\alpha} \in E^l$, а второй обратным деревом R высоты p, листья которого $r_p(f)$ соответствуют монотонным функциям $f \in A_1(p)$. При этом листья прямого дерева из слоя T_l отождествляются с листьями обратного дерева из слоя R_p при помощи канонического монотонного вложения. В качестве множества $\tilde{\mathcal{K}}(n)$ выбирается подмножество монотонных функций с p-суффиксами из некоторого множества (например, $\mathcal{F}(F)$, $F \subseteq E_p^p$).
- 2) Доказывается, что для большинства значений n сложность этого автомата асимптотически равна функции Шеннона для \mathcal{K} , а для некоторых значений n, в принципе, можно построить вдвое более сложный автомат, представляющий функцию из $\mathcal{K}(n)$.
- 3) Находится асимптотика функции Шеннона класса \mathcal{K} и асимптотические значения некоторых параметров построенного автомата.

Доказательство теоремы 4 и следствия 6 (классы $A_1, A_2, A_3, A_4, D_2F_i^2, i=2,3,6,7$).

Для классов A_1 – A_4 построим следующее вложение: $\left(l,p,\mathcal{F}\left(E_{p/2}^p\right)\right)$ при четных p (вложение E^l в множество функций, имеющих нижние единицы в среднем слое) и $\left(l,p,\mathcal{F}\left(E_{\lceil p/2\rceil}^p\right),\mathcal{F}\left(E_{\lfloor p/2\rfloor}^p\right)\right)$ при нечетных

p (вложение E^l в множество функций, имеющих нижние единицы в одном из средних слоев).

Утверждение 9. Для нечетного p можно выбрать нумерацию наборов в слоях $E^p_{\lfloor p/2 \rfloor}$ и $E^p_{\lceil p/2 \rceil}$ так, что для вложения $\left(l,p,\mathcal{F}\left(E^p_{\lceil p/2 \rceil}\right),\mathcal{F}\left(E^p_{\lfloor p/2 \rfloor}\right)\right)$ будет выполнено свойство (***).

Следует из возможности покрытия двоичного куба цепями Анселя [10].

То есть, построенный автомат представляет монотонную булеву функцию $\hat{f} \in A_1(n), \ n=l+p$. Для каждого $n \in \mathbb{N}$ выбираем минимально возможное значение p. Высота обратного дерева будет равна p при $\hat{n}(p-1) < n < \hat{n}(p)$, где $\hat{n}(p) = \binom{p}{\lfloor p/2 \rfloor} + p \bmod 2 + p$.

Для сложности функции \hat{f} очевидна оценка

$$2^{n-p+1} - 1 \leqslant \mathbb{S}(\hat{f}) \leqslant 2^{n-p+1} - p - 1 + \sum_{i=0}^{p-1} |A_1(i)|.$$

Из оценок числа монотонных функций Коршунова [6] следует, что для некоторого $\beta(n)=o(1)$ при $\hat{n}(p-1)(1+\beta(n))< n\leqslant \hat{n}(p)$ выполнено $2^{n-p}\gg \sum_{i=0}^{p-1}|A_1(i)|$, а при $\hat{n}(p-1)< n<\hat{n}(p-1)(1+\beta(n))$ имеем $2^{n-p}\gg \sum_{i=0}^{p-2}|A_1(i)|$.

Из (*) следует, что в первом случае сложность построенного автомата будет асимптотически равна функции Шеннона для класса A_1 , а во втором — сложность автомата, представляющего монотонную функцию, может быть увеличена не более чем вдвое за счет увеличения высоты прямого дерева на 1.

Оценим высоту обратного дерева и сложность построенного автомата:

Утверждение 10. При $n=p+\alpha\binom{p}{\lfloor p/2\rfloor}$, $\alpha\in\left(\frac{1}{2},1\right]$ выполнено $p=\log n+\frac{1}{2}\log\log n-\log c-\log \alpha+O\left(\frac{\log\log n}{\log n}\right)$ и $\mathbb{S}(\hat{f})\sim\mathbb{S}(A_1,n)\sim\frac{2\alpha c}{\sqrt{\log n}}\cdot\frac{2^n}{n}$, $c=\sqrt{2/\pi}$.

Так как на интервалах $\hat{n}(p-1) < n < \hat{n}(p-1)(1+\beta(n))$ выполнено $\mathbb{S}(\hat{f}) \sim \frac{c}{\sqrt{\log n}} \cdot \frac{2^n}{n}$, верно следствие 6- для всех n выполнено $\frac{c}{\sqrt{\log n}} \cdot \frac{2^n}{n} \lesssim \mathbb{S}(A_1, n) \lesssim \frac{2c}{\sqrt{\log n}} \cdot \frac{2^n}{n}$.

Так как функция \hat{f} сохраняет 0 и 1, вышесказанное применимо и к классам A_2, A_3, A_4 .

Через $E_{q,i}^p$ обозначим множество наборов из E_q^p , первый элемент которых равен $i \in E$. Для класса самодвойственных монотонных функций D_2 построим следующее вложение: $\left(l,p,\mathcal{G}\left(E_{p/2,1}^{p}\right),\mathcal{G}\left(E_{p/2,0}^{p}\right)\right)$ при четных p и $\left(l,p,\mathcal{G}\left(E_{\lceil p/2\rceil}^{p}\right),\mathcal{G}\left(E_{\lfloor p/2\rfloor}^{p}\right)\right)$ при нечетных p. На множестве $E^p_{p/2,1}$ ($E^p_{\lceil p/2 \rceil}$) задана некоторая нумерация наборов. Двойственные им наборы в том же порядке нумеруются в множестве $E^p_{p/2,0}$ ($E^p_{\lfloor p/2 \rfloor}$). В силу выбора множества функций $\mathcal G$ для любого $\bar \gamma \in E^p$ верно

$$\max_{\alpha_2,\ldots,\alpha_l} \mu_{l,p,0}(\alpha_2,\ldots,\alpha_l)(\gamma_1,\ldots,\gamma_p) = \min_{\alpha_2,\ldots,\alpha_l} \mu_{l,p,1}(\alpha_2,\ldots,\alpha_l)(\gamma_1,\ldots,\gamma_p).$$

Поэтому, вложения будут монотонными.

Утверждение 11. Функция \dot{f} , представляемая построенным автоматом, является самодвойственной.

Покажем, что при четном p двойственным наборам $\{0, \alpha_2, \dots, \alpha_l\}$ и $\{1,1-lpha_2,\ldots,1-lpha_l\}$ из E^l соответствуют двойственные функции $g_0\in$ $\mathcal{G}(E^p_{p/2,1})$ и $g_1\in\mathcal{G}(E^p_{p/2,0})$. Куб E^p распадается на 4 непересекающихся

множества $E_{p/2,0}^{p<},\,E_{p/2,0}^{p},\,E_{p/2,1}^{p},\,E_{p/2,1}^{p>}.$ $E_{p/2,0}^{p<}$ содержит наборы, двойственные наборам из $E_{p/2,1}^{p>}.$ Для любого $\bar{\alpha} \in E_{p/2,0}^{p<}$ $g_0(\bar{\alpha}) = g_1(\bar{\alpha}) = 0$ и для любого $\bar{\alpha} \in E_{p/2,1}^{p>}$ $g_0(\bar{\alpha}) = g_1(\bar{\alpha}) = 1$. $E_{p/2,0}^p$ содержит наборы, двойственные наборам из $E^p_{p/2,1}$. Для любого $\bar{\alpha} \in E^p_{p/2,0}$ $g_0(\bar{\alpha})=0$ и для любого $\bar{\alpha} \in E^p_{p/2,1}$ $g_1(\bar{\alpha})=1$. В силу выбранной нумерации наборов из $E^p_{p/2,0}$ и $E^p_{p/2,1}$ для любого $\bar{\alpha} \in E^p_{p/2,0}$ и, соответственно, $\bar{\alpha}^* \in E^p_{p/2,1}$ выполнено $g_1(\bar{\alpha}) = i \Leftrightarrow g_0(\bar{\alpha}^*) = 1 - i.$

Аналогично доказывается и для нечетного р. Утверждение 11 доказано.

Топология построенного автомата для всех n совпадает с топологией автомата, представляющего функцию \hat{f} . Следовательно, все рассуждения и оценки для \hat{f} и классов A_i применимы также для \check{f} и класса D_2 .

Для классов F_6^2 и F_7^2 построим монотонное вложение $\left(l,p,\mathcal{F}\left(E_{\lceil\frac{p+1}{2}\rceil}^p\right)\right)$, для классов F_2^2 и $F_3^2-\left(l,p,\mathcal{F}\left(E_{\lfloor\frac{p-1}{2}\rfloor}^p\right)\right)$. Доказывается аналогично случаю классов A_1 — A_4 . Отличие состоит в том, что изменяются интервалы значений n, при которых используются фиксированные значения p. Четные p выбираются при $\hat{n}(p-1)\leqslant n\leqslant \binom{p}{\frac{p}{2}+1}+p$, нечетные — при $\binom{p-1}{\frac{p-1}{2}+1}+p-1< n<\hat{n}(p)$. Соответственно, расширяются интервалы, на которых, в принципе, может быть построена более сложная функция из класса: для четных p — при $\hat{n}(p-1)\leqslant n<\hat{n}(p-1)(1+\beta(n))$, для нечетных — при $\binom{p-1}{\frac{p-1}{2}+1}+p-1< n<\hat{n}(p-1)(1+\beta(n))$. Утверждение 10 остается без изменения.

Теорема 4 доказана.

Следствие 6 очевидно из доказанной теоремы.

Доказательство теоремы 5 и следствий 7, 8 (классы F_i^{∞} , i=2,3,6,7).

Из (**) и утверждения 4 следует, что сложность автомата, представляющего функцию $\mathcal{H}_{\tilde{t}}^{n,1}(\hat{f})$ увеличится в $\frac{3}{2}$ раза при добавлении одной переменной. Поэтому, получаем $\mathbb{S}(\hat{f})\sim \frac{3\alpha c}{2\sqrt{\log n}}\cdot \frac{2^n}{n}$ при $n=\alpha\binom{p}{|p/2|}+p,\ \alpha\in\left(\frac{1}{2},1\right].$

При $\hat{n}(p-1)(1+\beta(n)) < n \leqslant \hat{n}(p) \mathbb{S}(\hat{f})$ будет асимптотически равна функции Шеннона для класса F_7^∞ . При $\hat{n}(p-1) < n < \hat{n}(p-1)(1+\beta(n))$ максимально возможная сложность монотонной функции тоже увеличится не более, чем в $\frac{3}{2}$ раза при добавлении одной переменной (при возможном дублировании слоя R_{p-1}). Значит, следствие 7 верно для класса F_7^∞ .

Аналогично рассуждения применимы к классам $F_i^{\infty}, i=2,3,6.$ Теорема 5 и следствие 7 доказаны.

Следствие 8 выводится из следствий 6, 7 и того, что $F_i^\mu \supseteq F_i^\infty$ для всех $\mu \geqslant 3, \ i=2,3,6,7.$

Заключение

В статье получены оценки функции Шеннона автоматной сложности для всех замкнутых классов из P_2 и построены сложные функции из этих классов.

Для классов C_1 – C_4 , D_1 , D_3 , F_i^{∞} , i=1,4,5,8 найдены точные значения функции Шеннона, и построенные функции являются самыми сложными в классах. Следует отметить, что для этих классов известны точные количества функций от n переменных.

Оценки и сложные функции для классов монотонных функций A_1 – A_4 , D_2 , F_i^{∞} , F_i^2 , i=2,3,6,7 также, в определенном смысле, являются неулучшаемыми. Асимптотика сложности построенных функций совпадает с асимптотикой функции Шеннона за исключением небольших интервалов. На этих интервалах, в принципе, может быть построена вдвое более сложная функция из класса. Для этого нужно построить более эффективное монотонное вложение. Для этих классов точные количества функций от n переменных неизвестны. Следует также отметить, что асимптотика функции Шеннона для классов монотонных функций хорошо согласуется с асимптотикой числа функций из этих классов, полученной Коршуновым [6] и Сапоженко [7].

Оценки функции Шеннона для оставшихся классов Поста F_i^μ , $\mu \geqslant 3, \ i=2,3,6,7$ и F_i^μ , $\mu \geqslant 2, \ i=1,4,5,8$ получены из оценок для меньших (F_i^∞) и объемлющего (C_1) классов и, в принципе, могут быть улучшены.

Список литературы

- [1] Яблонский С.В., Гаврилов Г.П., Кудрявцев В.Б. Функции алгебры логики и классы Поста. М.: Наука, 1966.
- [2] Кудрявцев В. Б., Алешин С. В., Подколзин А. С. Введение в теорию автоматов. М.: Наука, 1985.
- [3] Кибкало М. А. О сложности представления коллекции языков в конечных автоматах // Интеллектуальные системы. Т. 13, вып. 1–4, 2009. С. 347–360.

- [4] Кибкало М. А. Об автоматной сложности некоторых классов булевых функций // Интеллектуальные системы. Т. 14, вып. 1–4. 2010. С. 319–322.
- [5] Кузьмин А. Д. Реализация функций алгебры логики автоматами, нормальными алгорифмами и машинами Тьюринга // Проблемы кибернетики. Вып. 13. М.: Наука, 1955. С. 75–96. (РЖМат, 1966, 1B223).
- [6] Коршунов А. Д. О числе монотонных функций // Проблемы кибернетики. 1981. Вып. 38. С. 5–109.
- [7] Сапоженко А. А. О числе антицепей в многослойных ранжированных множествах // Дискретная математика. 1989. Т. 1, вып. 2. С. 110-128.
- [8] Post E. Two-valued iterative systems. 1941.
- [9] Post E. Introduction to a general theory of elementary propositions // Amer. J. Math. 43 (1921). P. 163–185.
- [10] Hansel G. Sur le nombre des fonctions booléennes monotones de n variables. C. R. Acad Sci. Paris. 1966. 262. P. 1088–1090. (Русский перевод: Ансель Ж. О числе монотонных булевых функций от n переменных // Кибернетич. сб. Нов. серия. Вып. 5. М.: Мир, 1968. С. 53–57.)