О слоистости булевых функций и функций k-значной логики

Т.С. Членова

В статье вводится понятие слоистости полных систем в P_k , $k\geqslant 2$. Получена оценка сверху слоистости произвольной полной системы в P_2 . В случае P_k , $k\geqslant 3$, произведено сведение проблемы конечности слоистости полных систем к проблеме конечности слоистости систем Слупецкого. Также приведен довольно широкий класс систем Слупецкого, слоистость которых конечна.

Ключевые слова: булева функция, функция k-значной логики, полная система, сложность, слоистость.

Введение

В данной статье изучается слоистость — мера сложности схем из функциональных элементов. Понятие сложности схем из функциональных элементов [1] можно рассматривать с разных точек зрения. Одна из них — это принятие за сложность схемы количества элементов в этой схеме [2]. Другая — исследование глубины схем [3]. В этой работе рассматривается сложность схем из функциональных элементов в несколько ином смысле. Рассмотрим схему над некоторой конечной полной системой [1] в $P_k, k \ge 2$. Для каждого элемента из данной полной системы рассмотрим множество всех схем, которые можно построить над системой, состоящей из одного этого элемента. Составляем бесконечную полную систему из всех таких схем и считаем глубину данной схемы из функциональных элементов над полученной бесконечной полной системой. Называем эту характеристику схемы слоистостью этой схемы. Через слоистость схем из функцио-

нальных элементов, реализующих некоторую функцию из P_k , определяется слоистость этой функции. Далее определяется слоистость полных систем в P_k . Данный подход к пониманию сложности возник в процессе работы специального семинара «Нейронные сети» кафедры математической теории интеллектуальных систем (МаТИС) механико-математического факультета МГУ им. М. В. Ломоносова. В. С. Половников показал в [4], что любую нейронную схему без памяти можно представить схемой над бесконечным множеством элементов, состоящим из линейных функций (констант, умножителей на константу и сумматоров с любым числом входов) и двух фиксированных нелинейных функций, причем схема эта будет иметь нелинейную глубину [4] не больше двух. Следовательно, любую нейронную схему можно представить схемой конечной слоистости над указанной системой.

Оказывается, что в случае булевых функций слоистость любой полной системы конечна, более того, она не больше 5. В случае P_k , $k \geqslant 3$, произведено сведение проблемы конечности слоистости произвольных полных систем к проблеме конечности слоистости систем Слупецкого. Также приведен довольно широкий класс систем Слупецкого, слоистость которых конечна.

1. Постановка задачи и формулировка результатов

Пусть $G=\{g_1,\ldots,g_n\}$ — полная система в $P_k,k\geqslant 2$. Назовем блоком B над $\{g_i\}$ схему с одним выходом над системой $\{g_i\}$. Обозначим $G_i=\{B|B$ — блок над $\{g_i\}\}$ и $\widetilde{G}=\cup_{i=1}^n G_i$.

Определение 1. Слоистостью схемы ϕ с одним выходом над системой \widetilde{G} в $P_k, k \geqslant 2$ назовем число $S_G(\phi)$, равное глубине этой схемы.

Определение 2. Слоистостью функции $f \in P_k$ над полной системой G в $P_k, k \geqslant 2$ называется число $S_G(f) = \min_{\phi \in \Phi} S_G(\phi)$, где Φ — множество всех схем, реализующих функцию f над системой \widetilde{G} .

Определение 3. Слоистостью полной системы G в $P_k, k \geqslant 2$ будем называть число S(G), равное максимуму слоистостей всех функций

 $f \in P_k$ над G , если множество чисел $\{S_G(f)|f \in P_k\}$ ограничено. Если же это множество чисел является неограниченным, то будем считать слоистость системы равной бесконечности.

Цель данной работы — исследование слоистостей полных систем в $P_k, k \geqslant 2$.

Начнем со случая P_2 . Сначала рассмотрим случай полных систем из P_2 , состоящих из функций, зависящих от двух переменных (функций из $P_2^{(2)}$). Для этого случая верна теорема:

Теорема 1. Любая полная система G в $P_2^{(2)}$ имеет слоистость, не превышающую четырех.

Замечание 1. Существует полная система функций от двух переменных, слоистость которой равна четырем.

Далее рассмотрим произвольные полные системы в P_2 . Доказана следующая теорема:

Теорема 2. Любая полная система G в P_2 имеет слоистость, не превышающую пяти.

Перейдем к исследованию случая $P_k, k \geqslant 3$.

Определение 4. Система Слупецкого в $P_k, k \geqslant 3$, — система, состоящая из всех функций, зависящих от одной переменной, и существенной функции [2], принимающей все k значений.

Согласно теореме Слупецкого, система Слупецкого в $P_k, k \geqslant 3$, является полной.

Определение 5. Системой Слупецкого, соответствующей данной существенной функции из $P_k, k \geqslant 3$, назовем систему, состоящую из этой функции и всех функций одной переменной в P_k .

Теорема 3. Пусть G — полная система в $P_k, k \geqslant 3$. Если в G есть существенная функция g, принимающая все k значений, такая что соответствующая ей система Слупецкого имеет конечную слоистость, то слоистость системы G конечна.

Следующая теорема показывает, что для любого $k\geqslant 3$ в P_k существует достаточно широкий класс существенных функций, принимающих все k значений, таких, что соответствующие им системы Слупецкого имеют конечную слоистость.

Теорема 4. Пусть G — система Слупецкого в P_k , $k \geqslant 3$, $g(x_1,\ldots,x_n) \in G$ — существенная функция, принимающая k значений. Пусть существуют номера i и j, i < j, $i,j \in [1,n]$, а так же набор $(\alpha_1,\ldots,\alpha_{i-1},\,\alpha_{i+1},\ldots,\alpha_{j-1},\,\alpha_{j+1},\ldots,\alpha_n),\,\alpha_s \in Z_k$, такой, что $g(\alpha_1,\ldots,\alpha_{i-1},\,x_i,\,\alpha_{i+1},\ldots,\alpha_{j-1},x_j,\,\alpha_{j+1},\ldots,\alpha_n) = \max(x_i,x_j)$ при $x_i,x_j \in \{0,1\}$. Тогда система G имеет конечную слоистость.

2. Доказательство результатов

Доказательство теоремы 1.

Замечание 2. Эту теорему достаточно доказать для минимальных полных систем, то есть для базисов. Это следует из того, что при добавлении в полную систему новых функций, ее слоистость может только уменьшиться.

Перечислим все функции из P_2 , зависящие от двух переменных, с точностью до перестановки аргументов: $x \mid y, x \downarrow y, x \to y, x > y, \overline{x}, x + y, x \leftrightarrow y, x \lor y, x \& y, 0, 1, x$. Все обозначения функций взяты из [1].

Рассмотрим таблицу принадлежности этих функций пяти предполным классам $T_0,\,T_1,\,S,\,L,\,M$:

(x,y)	$x \mid y$	$x \downarrow y$	$x \rightarrow y$	x > y	\overline{x}	x + y	$x \leftrightarrow y$	$x \vee y$	x&y	0	1
(0,0)	1	1	1	0	1	0	1	0	0	0	1
(0,1)	0	1	1	0	1	1	0	1	0	0	1
(1,0)	0	1	0	1	0	1	0	1	0	0	1
(1,1)	0	0	1	0	0	0	1	1	1	0	1
T_0	_	_	_	+	_	+	_	+	+	+	_
T_1	_	_	+	_	_	_	+	+	+	-	+
S	_	-	_	_	+	_	_	_	_	_	_
L	_	_	_	_	+	+	+	_	_	+	+
M	_	_	_	_	_	_	_	+	+	+	+

Таблица 1.

Функция х принадлежит всем предполным классам.

Используя теорему о функциональной полноте ([1], стр. 40), рассмотрим всевозможные базисы в P_2 , состоящие из функций, зависящих от двух переменных:

- 1) $\{x \mid y\}, \{x \downarrow y\}.$
- 2) базис содержит функцию $x \to y$. Тогда он должен содержать также функцию, не принадлежащую T_1 . Все базисы такого вида: $\{x \to y, 0\}, \{x \to y, x + y\}, \{x \to y, \overline{x}\}, \{x \to y, x > y\}$.
- 3) базис содержит функцию x > y. Тогда он должен содержать также функцию, не принадлежащую T_0 . Все базисы такого вида, исключая перечисленные ранее: $\{x > y, 1\}, \{x > y, x \leftrightarrow y\}, \{x > y, \overline{x}\}.$
- 4) базис содержит функцию \overline{x} . Тогда он должен содержать также функцию, не принадлежащую L. Все базисы такого вида, исключая перечисленные ранее: $\{\overline{x}, x \lor y\}$, $\{\overline{x}, x \& y\}$. Эти системы являются полными, так как функции x& y и $x \lor y$ также не принадлежат классу S.
- 5) базис содержит функцию x+y. Тогда он должен содержать также функцию, не принадлежащую T_0 , и функцию, не принадлежащую L. Все базисы такого вида, исключая перечисленные ранее: $\{x+y,\, x\vee y,\, 1\},\, \{x+y,\, x\& y,\, 1\},\, \{x+y,\, x\& y,\, 1\},\, \{x+y,\, x\leftrightarrow y,\, x\& y\},\, \{x+y,\, x\leftrightarrow y,\, x\vee y\}.$
- 6) базис содержит функцию $x \leftrightarrow y$. Тогда он должен содержать также функцию, не принадлежащую T_1 , и функцию, не принадлежащую L. Все базисы такого вида, исключая перечисленные ранее: $\{x \leftrightarrow y, \ x \lor y, \ 0\}, \ \{x \leftrightarrow y, \ x \& y, \ 0\}.$
- 7) функции $x \lor y$, x & y, 0, 1, x принадлежат предполному классу M, следовательно, из них невозможно составить ни одного базиса.

Все перечисленные базисы имеют слоистость не более 4. Это следует из лемм 1–11:

Лемма 1. Базисы $\{x \mid y\}$ и $\{x \downarrow y\}$ имеют слоистость, равную единице.

Доказательство очевидно, так как функции $x \mid y$ и $x \downarrow y$ Шефферовские.

Лемма 2. Базис $\{x \to y, g\}$, где $g \notin T_1 - \phi$ ункция двух переменных, имеет слоистость, не превышающую трех.

Доказательство. Так как система $\{x \to y, g\}$ полная, то из нее можно получить константу 0, причем для этого потребуется схема слоистости к. Любую функцию можно представить схемой над базисом $\{x \to y, 0\}$ слоистости не больше, чем 2. Для любой функции f возьмем ее реализацию схемой указанного вида и заменим элемент 0 в ней подсхемой, реализующей функцию 0 схемой над базисом $\{x \to y, g\}$. Получим представление функции f схемой над базисом $\{x \to y, g\}$ слоистости не больше, чем k+1.

Рассмотрим все функции д от двух переменных, не принадлежащие T_1 , и для каждой из них найдем значение k.

- 1) g(x,y) = 0. k = 1.
- 2) g(x,y) = x + y. x + x = 0. k = 1.
- 3) $q(x,y) = \overline{x}$. $\overline{x \to x} = 0$. k = 2.
- 4) g(x,y) = x > y. x > x = 0. k = 1.
- $(5) \ g(x,y) = x \ | \ y. \ x \ | \ x Шефферовская функция. \ k = 1.$
- 6) $g(x,y) = x \downarrow y$. $x \downarrow x$ Шефферовская функция. k=1.

Таким образом, всегда $k \le 2$. Следовательно, слоистость базиса $\{x \to y, g\}$, где $g \notin T_1$ — функция 2 переменных, не превышает 3. Лемма доказана.

Лемма 3. *Базис* $\{x > y, g\}$, где $g \notin T_0$ — функция двух переменных, имеет слоистость, не превышающую трех.

Доказательство аналогично доказательству леммы 2.

Лемма 4. Базис $\{\overline{x}, x \lor y\}$ имеет слоистость, не превышающую четырех.

Доказательство. Пусть $f(x_1,\dots,x_n)$ имеет ДНФ [1] вида $K_1 \vee \dots \vee K_k$, $k \geqslant 0$, где $K_i = x_{j_1}^{\sigma_1} \& \dots \& x_{j_{m_i}}^{\sigma_{m_i}}$. Преобразуем коньюнкцию K_i : $K_i = x_{j_1}^{\sigma_1} \& \dots \& x_{j_{m_i}}^{\sigma_{m_i}} = \overline{x_{j_1}^{\sigma_1}} \vee \dots \vee \overline{x_{j_{m_i}}^{\sigma_{m_i}}}$. Тогда функцию f можно представить схемой вида, показанного

$$K_i = x_{j_1}^{\sigma_1} \& \dots \& x_{j_m}^{\sigma_{m_i}} = \overline{x_{j_1}^{\overline{\sigma_1}}} \lor \dots \lor \overline{x_{j_m}^{\overline{\sigma_{m_i}}}}.$$

на рис. 1.

Слоистость этой схемы не больше 4, а в силу произвольности выбора f, и слоистость базиса $\{\overline{x}, x \lor y\}$ не больше 4. Лемма доказана.

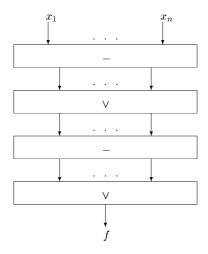


Рис. 1.

Лемма 5. Базис $\{\overline{x}, x\&y\}$ имеет слоистость, не превышающую четырех.

Доказательство аналогично доказательству леммы 4.

Лемма 6. Базис $\{x+y, x \lor y, 1\}$ имеет слоистость, не превышающую двух.

Доказательство. Докажем, что
$$(x+y) \lor z = (x \lor z) + (y \lor z) + z$$
: $z=0 \Rightarrow (x+y)=(x)+(y)$ — верно; $z=1 \Rightarrow 1=1+1+1$ — верно.

Используя это правило, мы можем любую функцию f над базисом $\{x+y,1,x\vee y\}$ представить в виде $f=D_1+\ldots+D_p+c,\ c\in\{0,1\},$ $p\geqslant 0$ где $D_i=x_{j_1}\vee\ldots\vee x_{j_{p_i}},\ p_i\geqslant 0,\ i\in[1,n],$ то есть схемой вида, показанного на рис. 2.

Докажем это представление индукцией по количеству элементов в схеме. Если в схеме 1 элемент, то она уже имеет указанный вид. Пусть утверждение верно при количестве элементов не более k. Докажем при количестве элементов, равном k+1. Пусть последний элемент в схеме —

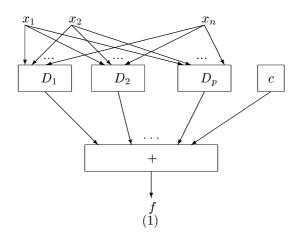


Рис. 2.

- 1) +. Для двух подсхем, поступающих на входы последнего элемента, выполнено предположение индукции. Следовательно, и вся схема имеет вид (1).
 - 2) 1. Тогда схема имеет вид (1).
- 3) У. Для двух подсхем, поступающих на входы последнего элемента выполнено предположение индукции. Тогда

$$f = (D_1^1 + \ldots + D_{p_1}^1 + c_1) \vee (D_1^2 + \ldots + D_{p_2}^2 + c_2).$$

 $f=(D_1^1+\ldots+D_{p_1}^1+c_1)\vee(D_1^2+\ldots+D_{p_2}^2+c_2).$ Докажем, что $(D_1^1+\ldots+D_{k_1}^1)\vee(D_1^2+\ldots+D_{k_2}^2)=D_1+\ldots+D_k$, где $D_i^l=x_{j_1}^l\vee\ldots\vee x_{j_{\underline{k_i}}}^l$, l=1,2 или $D_i^l=1$, индукцией по $q=\max(k_1,k_2)$. q=1— верно. Предположим, что утверждение верно при q=n,докажем при q = n + 1.

 $f = (D_1^1 + \ldots + D_{n+1}^1) \vee (D_1^2 + \ldots + D_{n+1}^2) = (D_{n+1}^1 \vee (D_1^2 + \ldots + D_{n+1}^2)) + ((D_1^1 + \ldots + D_n^1) \vee (D_1^2 + \ldots + D_{n+1}^2)) + (D_1^2 + \ldots + D_{n+1}^2) = (D_{n+1}^1 \vee D_{n+1}^2) + (D_{n+1}^1 \vee (D_1^2 + \ldots + D_n^2)) + D_{n+1}^1 + ((D_1^1 + \ldots + D_n^1) \vee D_{n+1}^2) + ((D_1^1 + \ldots + D_n^1) \vee (D_1^2 + \ldots + D_n^2)) + (D_1^1 + \ldots + D_n^1) + (D_1^2 + \ldots + D_{n+1}^2).$ Здесь некоторые D_k^j могут быть равны 0.

По предположению индукции, каждое из слагаемых представляется в виде $D_1 + \ldots + D_k$, значит, и все выражение представляется в этом виде.

Тогда функция f представляется в виде (1).

Следовательно, функция f имеет слоистость не более 2, а в силу произвольности выбора f, и слоистость базиса $\{x+y,\ x\vee y,\ 1\}$ не больше 2. Лемма доказана.

Лемма 7. Базис $\{x + y, x \& y, 1\}$ имеет слоистость, не превышающую двух.

Доказательство. Известно тождество:

$$(x+y)\&z = (x\&z) + (y\&z)$$

Дальнейшее доказательство аналогично доказательству леммы 6, только в данном случае для произвольной функции $f(x_1,\ldots,x_n)$ имеет место представление $f=K_1+\ldots+K_p+c$, где $c\in\{0,1\},p\geqslant 0$, а $K_i=x_{j_1}\&\ldots\&x_{j_{p_i}},p_q\geqslant 0,q\in[1,n]$. Лемма доказана.

Лемма 8. Базис $\{x+y, x \leftrightarrow y, x \& y\}$ имеет слоистость, не превышающую двух.

Доказательство. Верно тождество: $1 = x \leftrightarrow x$. Любая функция $f(x_1, \ldots, x_n)$ представляется в виде $f = K_1 + \ldots + K_k + c$, где $c \in 0, 1, k \geqslant 0$, а $K_i = x_{j_1} \& \ldots \& x_{j_{p_i}}, p_q \geqslant 0, q \in [1, n]$. Значит, представляется и в виде $f = K_1 + \ldots + K_k + (x \leftrightarrow x)$ или $f = K_1 + \ldots + K_k$ то есть ее можно представить схемой слоистости не более 2 над базисом $\{x + y, x \leftrightarrow y, x \& y\}$. Лемма доказана.

Лемма 9. Базис $\{x+y, x \leftrightarrow y, x \lor y\}$ имеет конечную слоистость, не превышающую двух.

Доказательство этой леммы аналогично доказательству леммы 8.

Лемма 10. *Базис* $\{x \leftrightarrow y, x \lor y, 0\}$ *имеет слоистость, не превышающую двух.*

Доказательство. Докажем, что $(x \leftrightarrow y) \lor z = (x \lor z) \leftrightarrow (y \lor z)$: $z = 0 \Rightarrow (x \leftrightarrow y) = (x) \leftrightarrow (y)$ — верно; $z = 1 \Rightarrow 1 = 1 \leftrightarrow 1$ — верно.

Дальнейшее доказательство аналогично доказательству леммы 6, только в данном случае для произвольной функции $f(x_1,\ldots,x_n)$ имеет место представление $f=D_1\leftrightarrow\ldots\leftrightarrow D_p\leftrightarrow c$, где $c\in\{0,1\}, p\geqslant 0$, а $D_i=x_{j_1}\vee\ldots\vee x_{j_{p_i}}, p_q\geqslant 0, q\in[1,n]$. Лемма доказана.

Лемма 11. Базис $\{x \leftrightarrow y, x \& y, 0\}$ имеет слоистость, не превышающую двух.

Доказательство. Докажем, что $(x \leftrightarrow y)\&z = (x\&z) \leftrightarrow (y\&z) \leftrightarrow z$: $z=0 \Rightarrow 0=0 \leftrightarrow 0 \leftrightarrow 0$ — верно; $z=1 \Rightarrow (x \leftrightarrow y) = (x) \leftrightarrow (y) \leftrightarrow 1$ — верно.

Дальнейшее доказательство аналогично доказательству леммы 6, только в данном случае для произвольной функции $f(x_1,\ldots,x_n)$ имеет место представление $f=K_1\leftrightarrow\ldots\leftrightarrow K_p\leftrightarrow c$, где $c\in 0,1,p\geqslant 0$, а $K_i=x_{j_1}\&\ldots\& x_{j_{p_i}},p_q\geqslant 0,q\in [1,n]$. Лемма доказана.

Получили, что слоистость произвольного базиса в P_2 , состоящего из функций двух переменных, не больше 4. А значит (по замечанию 2) и слоистость произвольной полной системы в P_2 , состоящей из функций, зависящих от двух переменных, не больше 4. Теорема доказана.

Доказательство замечания 1. Рассмотрим базис $\{\overline{x}, x \lor y\}$. Предположим, что его слоистость не больше 3. Найдем общий вид всех функций, которые представляются схемами слоистости не более 3 над базисом $\{\overline{x}, x \lor y\}$:

- 1. Слоистость схемы не больше 1. Тогда эта схема реализует функцию вида \overline{x} или $x_{i_1} \vee \ldots \vee x_{i_k}, k \geqslant 1$.
 - 2. Слоистость схемы не больше 2. Последний элемент в схеме —
- 1) ¬. На его вход поступает выход подсхемы слоистости не более 1. Тогда схема реализует функцию вида x_i или $\overline{x}_{i_1} \& \dots \& \overline{x}_{i_k}, k \geqslant 1$.
- 2) \lor . Последний слой на каждом из путей в схеме состоит из элементов \lor . Рассмотрим подсхему нашей схемы, представляющую собой объединение последних слоев каждого пути в нашей схеме; входы подсхемы входы на эти слои, выход выход нашей схемы. Так как функция $x \lor y$ обладает свойствами коммутативности и ассоциативности, то эта подсхема реализует функцию $y_1 \lor \ldots \lor y_s, s \geqslant 1$. На входы этой подсхемы поступают выходы подсхем слоистости не более 1. Тогда вся схема реализует функцию вида $D = x_{i_1}^{\sigma_1} \lor \ldots \lor x_{i_k}^{\sigma_k}, k \geqslant 1$.
 - 3. Слоистость схемы не больше 3. Последний элемент в схеме —
- 1) ¬. На его вход поступает выход подсхемы слоистости не более 2. Тогда схема реализует функцию вида $x_{i_1} \lor \ldots \lor x_{i_k}, k \geqslant 1$ или $x_{i_1}^{\sigma_1} \& \ldots \& x_{i_k}^{\sigma_k}, k \geqslant 1$.

2) \lor . Последний слой на каждом из путей в схеме состоит из элементов \lor . Рассмотрим подсхему нашей схемы, представляющую собой объединение последних слоев каждого пути в нашей схеме; входы подсхемы — входы на эти слои, выход — выход нашей схемы. Так как функция $x \lor y$ обладает свойствами коммутативности и ассоциативности, то эта подсхема реализует функцию $y_1 \lor \ldots \lor y_s, s \geqslant 1$. На входы этой подсхемы поступают выходы подсхем слоистости не более 2. Тогда вся схема реализует функцию вида $D = x_{i_1}^{\sigma_1} \lor \ldots \lor x_{i_k}^{\sigma_k} \lor K_1 \lor \ldots \lor K_l, k \geqslant 1, l \geqslant 0$, где $K_i = \overline{x}_{j_1} \& \ldots \& \overline{x}_{j_{p_i}}, i \geqslant 1, p_i \geqslant 1$.

Получили, что функции, реализуемые схемами слоистости не более 3 над базисом $\{\overline{x}, x \lor y\}$, могут иметь два вида: $x_{i_1}^{\sigma_1} \& \dots \& x_{i_k}^{\sigma_k}, k \geqslant 1$ или $D = x_{i_1}^{\sigma_1} \lor \dots \lor x_{i_k}^{\sigma_k} \lor K_1 \lor \dots \lor K_l, k \geqslant 1, l \geqslant 0$ где $K_i = \overline{x}_{j_1} \& \dots \& \overline{x}_{j_{p_i}}, i \geqslant 1, p_i \geqslant 1$.

Рассмотрим функцию $f=(x_1\&x_2\&x_3)\lor(\overline{x}_1\&\overline{x}_2\&\overline{x}_3)$. Ее значение равно 1 только на наборах (0,0,0) и (1,1,1). Предположим. что слоистость этой функции не более 3 над базисом $\{\overline{x},x\lor y\}$. Тогда ее можно записать в 1) или 2) виде:

```
1) x_1^{\sigma_1} \& x_2^{\sigma_2} \& x_3^{\sigma_3}

f(1,1,1)=1\Rightarrow \sigma_1=\sigma_2=\sigma_3=1

f(0,0,0)=1\Rightarrow \sigma_1=\sigma_2=\sigma_3=0

Притиворечие.
```

2) $(a\&\overline{x}_1\&\overline{x}_2\&\overline{x}_3) \lor (b\&\overline{x}_1\&\overline{x}_2) \lor (c\&\overline{x}_1\&\overline{x}_3) \lor (d\&\overline{x}_2\&\overline{x}_3) \lor (e\&x_1 \lor g\&x_2) \lor (h\&x_3 \lor i\&\overline{x}_1) \lor (j\&\overline{x}_2) \lor (k\&\overline{x}_3).$

$$\begin{split} f(1,0,0) &= 0 \Rightarrow d \lor e \lor j \lor k = 0; \\ f(0,1,0) &= 0 \Rightarrow c \lor g \lor i \lor k = 0; \\ f(1,0,0) &= 0 \Rightarrow b \lor h \lor i \lor j = 0 \Rightarrow \\ b &= c = d = e = g = h = i = j = k = 0; \\ f(0,0,0) &= 1 \Rightarrow a = 1; \\ f(1,1,1) &= 1 \Rightarrow 0 = 1. \end{split}$$

Противоречие.

Следовательно, функцию $f=(x_1\&x_2\&x_3)\lor(\overline{x}_1\&\overline{x}_2\&\overline{x}_3)$ нельзя представить схемой слоистости не более 3 над базисом $\{\overline{x},x\lor y\}$. Значит, слоистость базиса $\{\overline{x},x\lor y\}$ не менее 4. А по теореме 1 его слоистость не более 4. Замечание доказано.

Перейдем к доказательству теоремы 2. Для этого докажем леммы 12 и 13:

Лемма 12. Любая полная система G в P_2 имеет конечную слоистость.

Доказательство. Пусть константы 0 и 1 имеют слоистости k_0 и k_1 соответственно над полной системой $\{g_1, \ldots, g_n\}$,

 $k = \max(k_0, k_1).$

- $0 \notin T_1, 0 \notin S, 1 \notin T_0$. В системе $\{g_1, \dots, g_n\}$ должны быть нелинейная и немонотонная функции.
- 1. Пусть в системе $\{g_1,\ldots,g_n\}$ есть функция g_1 такие, что $g_1\notin L$, $g_1\notin M$. Тогда система $\{0,1,g_1\}$ является полной. Любую функцию f можно представить схемой над системой $\{0,1,g_1\}$ слоистости не более, чем 2. Элементы 0 и 1 в этой схеме заменим подсхемами, реализующими функции 0 и 1 соответственно над системой $\{g_1,\ldots,g_n\}$. Тогда слоистость схемы, реализующей функцию f над системой $\{g_1,\ldots,g_n\}$, будет не более k+1. В силу произвольности выбора функции f слоистость системы $\{g_1,\ldots,g_n\}$ не больше k+1.
- 2. Пусть в системе $\{g_1,\ldots,g_n\}$ есть функции g_1 и g_2 такие, что $g_1 \notin M, g_1 \in L, g_2 \notin L, g_2 \in M$. По леммам о немонотонной и нелинейной функции [1] подстановкой констант и отождествлением переменных из функций g_1 и g_2 можно получить соответственно функции $g_1'(x) = \overline{x}$ и $g_2'(x_1, x_2)$ — нелинейную функцию от двух переменных. Система $\{0,1,g_1',g_2'\}$ является полной в P_2 , и состоит из функций двух переменных. По теореме 1 эта полная система имеет конечную слоистость s. Возьмем представление произвольной функции f схемой слоистости $\leqslant s$ над этой системой. Схемы, реализующие функции g_1' и g_2' над системой $\{0,1,g_1,g_2\}$ имеют слоистость не более 2, следовательно, слоистость функции f над системой $\{0,1,g_1,g_2\}$ не больше s+1. Заменим элементы 0 и 1 в этой схеме подсхемами, реализующими функции 0 и 1 схемами над системой $\{g_1,\ldots,g_n\}$, и получим, что f имеет слоистость не более s+k над системой $\{g_1,\ldots,g_n\}$. В силу произвольности выбора функции f слоистость системы $\{g_1,\ldots,g_n\}$ не больше s + k, то есть конечна.

Лемма доказана.

Введем вспомогательное определение.

Определение 6. Назовем функцию $g'(x,y) \in P_2$ 2-сужением функции $g(x_1,\ldots,x_m)$ относительно отождествления (i_1,\ldots,i_s) , если функция g'(x,y) получается из функции $g(x_1,\ldots,x_m)$ отождествлением переменных $x_{i_1}=\ldots=x_{i_s}=x$ и $x_{i_{s+1}}=\ldots=x_{i_m}=y, i_l\neq i_k$ при $l\neq k,s\in [0,m],i_p\in [1,m]$ для любого $p\in [1,m]$.

Пемма 13. $f(x_1, \ldots x_m) \in S$ тогда и только тогда, когда для любого s из [0,m] для любого отождествления (i_1,\ldots,i_s) 2-сужение функции f относительно этого отождествления есть самодвойственная функция одной переменной.

Доказательство. Необходимость очевидна, так как отождествление переменных — это подстановка самодвойственной функции, класс самодвойственных функций замкнут, и не существует самодвойственных функций, существенно зависящих от двух переменных.

Докажем достаточность. Предположим, что $f \notin S$. Тогда \exists набор $\tilde{\sigma} = (\sigma_1, \dots \sigma_m)$ такой, что $f(\tilde{\sigma}) = f(\bar{\tilde{\sigma}})$.

Без ограничения общности, $\sigma_1 = \ldots = \sigma_s = 0, \sigma_{s+1} = \ldots = \sigma_m = 1$ и 2-сужение функции f относительно отождествления $(1,\ldots,s)$ равно x.

$$f(x, ..., x, y, ..., y) = x \Rightarrow f(0, ..., 0, 1, ... 1) = 0, f(1, ... 1, 0, ..., 0) = 1,$$
 что противоречит равенству $f(\tilde{\sigma}) = f(\bar{\tilde{\sigma}}).$

Противоречие доказывает лемму.

Доказательство теоремы 2. При доказательстве леммы 12 было получено, что слоистость любой полной системы G не больше s+k, где s — слоистость полной системы, состоящей из функций двух переменных, а k — максимум слоистостей функций 0 и 1 над системой G.

По теореме 1, $s \leq 4$.

Рассмотрим несколько случаев.

1. Пусть в системе G есть функция $g_1:g_1(x,\ldots,x)=0$. Тогда в ней есть также функция $g_2:g_2(x,\ldots,x)=1$ или $g_2(x,\ldots,x)=\overline{x}$ (иначе все функции из полной системы принадлежат классу T_0 , что невозможно).

В первом случае функции 0 и 1 имеют слоистость не более 1 над системой G и слоистость системы G не больше 5.

Во втором случае функции 0 и 1 имеют слоистость не более 2 над системой G. Тогда слоистость системы G не больше 6. Рассмотрим этот случай.

- 1) Пусть $g_2 \notin L$. Тогда система $\{0,1,g_2\}$ является полной. Любую функцию f можно представить схемой над системой $\{0,1,g_2\}$ слоистости не более, чем 2. Элементы 0 и 1 в этой схеме заменим подсхемами, реализующими функции 0 и 1 соответственно над системой G. Тогда слоистость схемы, реализующей функцию f над системой G, будет не более $k+1\leqslant 3$. В силу произвольности выбора функции f слоистость системы G не больше G.
- 2) Пусть $g_2 \in L$ Тогда в системе G есть функция g_3 , такая что $g_3 \notin L$. По лемме о нелинейной функции подстановкой констант и отождествлением переменных из функций g_3 можно получить функцию $g_3'(x_1,x_2)$ нелинейную функцию от двух переменных. Обозначим $g_2'(x) = g_2(x,\ldots,x) = \overline{x}$. Система $\{0,1,g_2'(x),g_3'(x,y)\}$ является полной в P_2 и состоит из функций, зависящих от двух переменных. По теореме 1 эта полная система имеет слоистость $s \leqslant 4$, причем (по леммам 1–11) s=4 только тогда, когда $g_3'(x,y)=x\vee y$ или $g_3'(x,y)=x\vee y$. Рассмотрим случай s=4. Возьмем представление произвольной функции f схемой слоистости $f(0,1,g_2'(x),g_3'(x,y))$. Схема имеет вид, показанный на рис. $f(0,1,g_2'(x),g_3'(x,y))$. Схема имеет вид, показанный на рис. $f(0,1,g_2'(x),g_3'(x,y))$.

Схемы, реализующие функции $g_2'(x)$ и $g_3'(x)$ над системой $\{0,1,g_2,g_3\}$ имеют слоистость 2, следовательно, слоистость функции f над системой $\{0,1,g_1,g_2\}$ не больше 5. Заменим элементы 0 и 1 в этой схеме подсхемами, реализующими функции 0 и 1 схемами над системой G, и получим схему на рис. 4.

Слоистость этой схемы не более 5. В силу произвольности выбора функции f слоистость системы G не больше 5.

- 2. Пусть в системе G есть функция $g_1:g_1(x,\ldots,x)=1$. Аналогично предыдущему пункту, слоистость системы G не больше 5.
- 3. Для любой функции g из системы G либо $g(x,\ldots,x)=x$, либо $g(x,\ldots,x)=\overline{x}$. Если бы $g_i(x,\ldots,x)=x$ для все $g_i\in G$, то все функции из полной системы G принадлежали бы T_0 , чего быть не может. Следовательно, в этой системе существует функция $g_1:g_1(x,\ldots,x)=\overline{x}$.

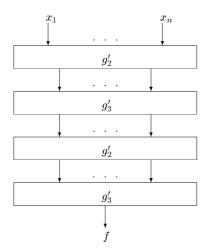


Рис. 3.

 $g_1 \notin T_0, g_1 \notin T_1, g_1 \notin M.$

1) $g_1 \notin S, g_1 \in L$

Тогда $g_1(x_1,\ldots,x_m)=\sum_{i=1}^m a_ix_i+c.$ $g_1(\overline{x_1},\ldots,\overline{x_m})=\sum_{i=1}^m a_ix_i+\sum_{i=1}^m a_i+c.$ Так как $g_1\notin S$, то существует набор $\tilde{\sigma}$, такой, что $g_1(\tilde{\sigma})=g_1(\overline{\tilde{\sigma}}).$ Следовательно, $\sum_{i=1}^m a_i=0$, то есть среди чисел $a_i,i=1,\ldots m$, четное число ненулевых. Значит, $g_1(x_1,\ldots,x_m)=a_{i_1}x_{i_1}+\ldots a_{i_{2k}}x_{i_{2k}}+c,i_j\in [1,m], j\in [1,2k]; i_s\neq i_l$ при $s\neq l.$ $g_1(x,\ldots,x)=c.$ Это противоречит тому, что $g_1(x,\ldots,x)\in \{x,x+1\}.$

- 2) $g_1 \notin S, g_1 \notin L$. В этом случае система $\{g_1\}$ является полной и ее слоистость равна 1.
 - 3) $g_1 \in S$. Тогда в полной системе G есть также функция $g_2 \notin S$.

Представим функцию $g_2(x_1,\ldots x_m)$ в виде полинома Жегалкина [1]: $g_2(x_1,\ldots x_m)=K_1+\ldots+K_s+c, c\in\{0,1\}, s\geqslant 0, K_i=x_{j_1}\cdot\ldots\cdot x_{j_{n_i}}, n_i\in[1,m], j_l\in[0,m], l\in[1,n_i], j_p\neq j_q$, если $p\neq q$. $g_2(x,\ldots x)=\bigoplus_{i=1}^s x+c$. Так как $g_2(x,\ldots x)=x+c$, то s должо быть нечетным. Это свойство (нечетность количества коньюнкций в представлении функции полиномом Жегалкина) останется верным для любого отождествления переменных в g_2 . Значит, при 2-сужении функции g_2 относительно любого отождествления переменных (i_1,\ldots,i_p) , могут

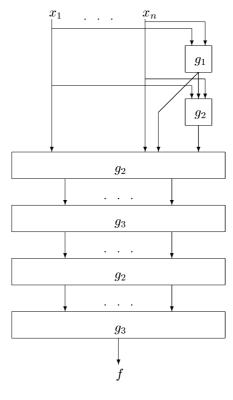


Рис. 4.

получиться только такие функции: xy+c, xy+x+y+c, x+c, y+c, где $c\in\{0,1\}.$

- а) Пусть каким-либо 2-сужением функции g_2 будет функция xy+1 (или xy+x+y+1). Функция xy+1 (или xy+x+y+1) Шефферовская, значит система $\{g_2\}$ является полной и имеет слоистость, равную 1. Следовательно, слоистость системы G равна 1.
- b) Пусть каким-либо 2-сужением функции g_2 будет функция xy. Система $\{\overline{x}, xy\}$ является полной и имеет слоистость, равную 4, значит система $\{g_1, g_2\}$ является полной и имеет слоистость не более 4. Следовательно, слоистость системы G не больше 4.
- с) Пусть каким-либо 2-сужением функции g_2 будет функция $xy+x+y=x\vee y.$ Система $\{\overline{x},xy+x+y\}$ является полной и име-

ет слоистость, равную 4, значит система $\{g_1,g_2\}$ является полной и имеет слоистость не более 4. Следовательно, слоистость системы G не больше 4.

d) Предположим, что 2-сужением функции g_2 относительно любого отождествления переменных (i_1,\ldots,i_s) будет функция x+c или $y+c,c\in\{0,1\}$. По лемме 12, функция $g_2\in S$, что противоречит условию пункта 3).

Значит, слоистость любой полной системы при k=3 не больше 5. Следовательно, не существует полных систем, имеющих слоистость больше 5. Теорема доказана.

Доказательство теоремы 3.

Возьмем произвольную полную систему G в P_k , где $k\geqslant 3$. Пусть $g(x_1,\ldots,x_n)\in G$ — существенная функция, принимающая все k значений, такая, что соответствующая ей система Слупецкого $H=\{g(x_1,\ldots,x_n)\}\cup\{h(x)|h(x)\in P_k^{(1)}\}$ имеет конечную слоистость N. Пусть все функции одной переменной имеют слоистость не более M над системой G. Возьмем произвольную функцию $f\in P_k$. Представим ее схемой Φ слоистости не более N над H. Очевидно, любую схему над G можно привести к виду, в котором у ее элементов не будет разветвляющихся выходов, а слоистость не станет больше. Пусть схема Φ_1 получается из схемы Φ таким преобразованием.

Рассмотрим произвольный путь в схеме Φ_1 . Если в нем есть несколько подряд идущих элементом с одним входом: h_1,h_2,\ldots,h_k , то их можно заменить элементом, реализующим функцию $h(x)=h_k(h_{k-1}(\ldots h_2(h_1(x))\ldots))$. При таком преобразовании слоистость схемы не увеличится. Такую же операцию произведем для всех путей в схеме. Слоистость получившейся схемы над H не более, чем N. Поэтому в каждом пути этой схемы не более N слоев, состоящих из элементов, реализующих существенную функцию $g(x_1,\ldots,x_n)$.

Теперь элементы h_i заменим подсхемами, реализующими функции $h_i(x)$ над G. Так как $g \in G$, получим схему над G. В ней выберем произвольный путь. Он проходит через не более, чем N подсхем, реализующих функции $h_i(x)$ над G. Слоистость каждой такой подсхемы над G не больше, чем M. Остальные части этого пути представляют собой слои, состоящие из элементов, реализующих существенную

функцию $g(x_1,\ldots,x_n)$. Их не больше N. Следовательно, количество слоев в выбранном пути не больше $N+N\cdot M$. В силу произвольности выбора пути, слоистость схемы, а значит, и слоистость функции f не больше $N+N\cdot M$. В силу произвольности выбора функции, слоистость полной системы G не больше $N+N\cdot M$, а значит, конечна. Теорема доказана.

Доказательство теоремы 4.

Пусть G — система Слупецкого в $P_k, k \geqslant 3, g(x_1, \ldots, x_n)$ — существенная функция, принимающая k значений. Покажем, пользуясь индукцией, как с помощью этой системы можно получить все функции из P_k и оценим их слоистость.

1) Базис индукции. Получим из G все функции, принимающие два значения.

Обозначим

$$x \vee_{01} y = g(\alpha_1, \dots, \alpha_{i-1}, x, \alpha_{i+1}, \dots, \alpha_{j-1}, y, \alpha_{j+1}, \dots, \alpha_n)$$

— это максимум на множестве $\{0,1\} \times \{0,1\}$.

Введем функцию $j_0(x) = 1$ при x = 0 и 0, иначе.

Тогда $x\&_{01}y=j_0(j_0(x)\vee_{01}j_0(y))$, есть минимум на множестве $\{0,1\}\times\{0,1\}$. Пусть $h(x_1,\ldots,x_m), h\not\equiv \mathrm{const},$ произвольная функция, принимающая два значения, 0 и 1; тогда

$$h(x_1, \dots, x_m) = \bigvee_{\sigma_1 \dots \sigma_m} j_{\sigma_1}(x_1) \& \dots \& j_{\sigma_m}(x_m) \& h(\sigma_1, \dots, \sigma_m) =$$

$$= \bigvee_{\sigma_1 \dots \sigma_m^{01}} j_{\sigma_1}(x_1) \&_{01} \dots \&_{01} j_{\sigma_m}(x_m) \&_{01} h(\sigma_1, \dots, \sigma_m).$$

Таким образом, функция $h(x_1, \ldots, x_m)$ может быть получена из системы G, причем ее слоистость над G не больше 5. Так как G содержит все функции одной переменной, принимающие любые два значения, то мы можем также получить из G все функции, принимающие любые два значения, используя схемы слоистости не более 6.

2) Пусть из G построены все функции, принимающие не более l-1 значений, l-1 < k. Покажем, что тогда можно построить все функции из P_k , принимающие l значений.

Для дальнейшего доказательства необходима

Лемма 14. Если $g(x_1, \ldots, x_n)$ — существенная функция, принимающая не менее $l, l \geqslant 3$ значений, то найдутся n подмножеств G_1, \ldots, G_n множества Z_k таких, что $1 \leqslant |G_i| \leqslant l-1, (i=1,\ldots,n)$ и на множестве наборов $(\alpha_1, \ldots, \alpha_n)$, где $\alpha_i \in G_i$, то есть на $G_1 \times \ldots \times G_n$, функция f принимает l значений.

Доказательство приведено в [1] стр. 57.

Возьмем функцию $g(x_1,\ldots,x_n)$. На основании леммы 1 найдутся n подмножеств G_1,\ldots,G_n таких, что $|G_i|\leqslant l-1 (i=1,\ldots,n)$, и на $A=G_1\times\ldots\times G_n$ функция f принимает l зачений $\eta_0,\eta_1,\ldots,\eta_{l-1}$. Пусть эти значения принимаются соответственно на наборах из A:

$$\tilde{\alpha}^{(0)} = (\alpha_1^{(0)}, \alpha_2^{(0)}, \dots, \alpha_n^{(0)}),$$

$$\tilde{\alpha}^{(1)} = (\alpha_1^{(1)}, \alpha_2^{(1)}, \dots, \alpha_n^{(1)}),$$

$$\dots$$

$$\tilde{\alpha}^{(l-1)} = (\alpha_1^{(l-1)}, \alpha_2^{(l-1)}, \dots, \alpha_n^{(l-1)}),$$

то есть

$$f(\tilde{\alpha}^{(0)}) = \eta_0, f(\tilde{\alpha}^{(1)}) = \eta_1, \dots, f(\tilde{\alpha}^{(l-1)}) = \eta_{l-1}.$$

Покажем, каким образом из функций системы G можно построить произвольную функцию $h(x_1, \ldots, x_m)$, принимающую значения $\eta_0, \eta_1, \ldots, \eta_{l-1}$.

В самом деле, функцию $h(x_1,\ldots,x_m)$ можно задать при помощи таблицы 2, в которой $\tilde{\sigma}=(\sigma_1,\ldots,\sigma_m)$. Определим функции $\psi_j(x_1,\ldots,x_m),\ (j=1,\ldots,n)$, принимающие не более l-1 значений, так, как указано в таблице 3.

x_1,\ldots,x_m	$h(x_1,\ldots,x_m)$
σ_1,\ldots,σ_m	$\eta_{i(ilde{\sigma})}$

Таблица 2.

Тогда

$$h(x_1,\ldots,x_m)=f(\psi_1(x_1,\ldots,x_m),\ldots,\psi_n(x_1,\ldots,x_m)),$$
 так как

x_1, \ldots, x_m	$\psi_j(x_1,\ldots,x_m)$
σ_1,\ldots,σ_m	$lpha_j^{i(ilde{\sigma})}$

Таблица 3.

$$f(\psi_1(\sigma_1,\ldots,\sigma_m),\ldots,\psi_n(\sigma_1,\ldots,\sigma_m)) = f(\alpha_1^{i(\tilde{\sigma})},\ldots,\alpha_n^{i(\tilde{\sigma})}) = \eta_{i(\tilde{\sigma})},$$
$$h(\sigma_1,\ldots,\sigma_m) = \eta_{i(\tilde{\sigma})}.$$

Если слоистость всех функций $\psi_j(x_1,\ldots,x_m), (j=1,\ldots,n)$ не больше N_{l-1} , то слоистость функции $h(x_1,\ldots,x_m)$ не больше $N_{l-1}+1$.

Имея все функции с заданными l значениями $\eta_0,\eta_1,\dots,\eta_{l-1},$ можно в случае l< k получить при помощи функции одной переменной остальные функции с l значениями, причем их слоистость будет не больше $N_{l-1}+2$.

Повторяем этот процесс до тех пор, пока не дойдем до l=k, и тогда построим все функции из P_k . Их слоистость не больше, чем

$$N_{k-1} + 2 = N_{k-2} + 4 = \dots = N_2 + 2(k-2) = 6 + 2(k-2) = 2k + 4.$$

Следовательно, слоистость системы G не больше 2k+4, то есть конечна. Теорема доказана.

Автор выражает благодарность Часовских А. А. за постановку задачи и помощь в работе.

Список литературы

- [1] Яблонский С. В. Введение в дискретную математику. М.: Высшая школа, 2003.
- [2] Лупанов О. Б. О синтезе некоторых классов управляющих систем // Проблемы кибернетики. Вып. 10. М.: Физматгиз, 1963. С. 63–97.
- [3] Касим-Заде О. М. О глубине булевых функций при реализации схемами над произвольным базисом // Вестник Московского университета. Сер. 1. Математика. Механика. 2007. № 1. С. 18–21.
- [4] Половников В. С. О некоторых характеристиках нейронных схем // Интеллектуальные системы. 2004. Т. 8, вып. 1–4. С. 121–145.