О проблеме полноты в классе автоматов без обратной связи

Д. Н. Жук, Ю. Н. Присмотров

В работе рассматривается проблема полноты для автоматов без обратной связи, имеющих в качестве входного и выходного алфавитов множество $E_2=\{0,1\}$. Исследуются системы автоматных функций вида $P_2\cup\nu$. Доказывается, что в этом случае проблема полноты алгоритмически разрешима, и для каждого конечного ν строится критериальная система.

Введение

Задача о полноте (относительно различных операторов замыкания) для систем автоматов имеет важное прикладное значение. На практике, прежде чем приступить к проектированию конкретной схемы, необходимо убедиться, что набор элементов, из которых будет вестись синтез, является достаточным. При этом условия, в которых предстоит работать синтезируемому устройству, могут накладывать различного рода ограничения на сложность реализации, надежность и т. д. Эти условия, по существу, и определяют тот оператор замыкания, относительно которого необходимо решать задачу полноты.

В работе [2] установлена алгоритмическая неразрешимость задачи о полноте относительно операций суперпозиции и обратной связи для конечных систем автоматных функций. Вместе с тем, для систем автоматов, содержащих все булевы функции, указанная задача алгоритмически разрешима [3]. В.А.Буевич показал, что в классе автоматов без обратной связи задача о полноте алгоритмически неразрешима.

В данной работе исследуется задача о полноте относительно операции суперпозиции для систем автоматов без обратной связи вида $P_2 \cup \nu$; найдены два конечных и три счетных семейства предполных классов. Построен алгоритм проверки на полноту таких систем автоматов. Для каждого конечного ν он заключается в проверке непринадлежности ν конечному числу предполных классов. Авторы выражают благодарность своему научному руководителю Кудрявцеву В. Б. за оказанную помощь и поддержку в исследовании задачи и написании данной работы.

1. Основные понятия и результаты

 P_2 — множество всех булевых функций. Рассмотрим конечные автоматы, имеющие ровно один выход и получающиеся при помощи операции суперпозиции из элементов, являющихся функциями из P_2 или единичной задержкой с начальным состоянием 0 или 1. Автоматы такого вида не содержат циклов, то есть операция обратной связи в них не реализуется.

Будем использовать обозначения из [1]. Пусть $E_2 = \{0,1\}, E_2{}^l -$ множество слов длины l, E — множество всех сверхслов в алфавите E_2 . Множество E^n состоит из элементов $(\alpha_1, \alpha_2, \ldots, \alpha_n)$, где $\alpha_i \in E$. Будем говорить, что слово $\gamma \in E_2{}^d$ имеет период e, если e делит d и $\gamma(i+1) = \gamma(i \pmod e) + 1)$ для $i = 0, 1, \ldots, d-1$. Пусть $\alpha \in E_2{}^l$, то есть $\alpha = \alpha(1)\alpha(2)\ldots\alpha(l)$ и $|\alpha| = l$. Обозначим $\bigcirc_r \alpha = \alpha(r+1)\ldots\alpha(|\alpha|)\alpha(1)\ldots\alpha(r), \ inv(\alpha) = \alpha(|\alpha|)\alpha(|\alpha|-1)\ldots\alpha(2)\alpha(1), \ [_k\alpha = \alpha(|\alpha|-k+1)\ldots\alpha(|\alpha|-1)\alpha(|\alpha|).$ Аналогично для $\alpha \in E$ сверхслово $\alpha = \alpha(1)\alpha(2)\alpha(3)\ldots$ и $|\alpha| = \infty$. Для слова или сверхслова α , а также для $k \leqslant |\alpha|$ обозначим $]_k\alpha = \alpha(1)\alpha(2)\ldots\alpha(k)$. Для конечного слова α слово $\alpha^s = \alpha\alpha\ldots\alpha$, а сверхслово $\alpha^\infty = \alpha\alpha\alpha\ldots$

Элемент множества E^n мы будем представлять двумя способами. С одной стороны, это $(\alpha_1,\ldots,\alpha_n)$, где $\alpha_j\in E,\,j=1,2,\ldots,n$, с другой — это бесконечная последовательность $(\vec{a}_1,\vec{a}_2,\ldots)$, где $\vec{a}_i\in E_2^n$. Аналогично, элемент множества $(E_2^n)^p$ — это с одной стороны p векторов $\vec{a}_1,\vec{a}_2,\ldots,\vec{a}_p\in E_2^n$; с другой стороны — это n слов длины p.

Автомат без обратной связи можно интерпретировать как функ-

цию $T: E^n \longrightarrow E$, переводящую входную последовательность $(\vec{x}(1), \vec{x}(2), \ldots) \in E^n$ в выходную последовательность $(y(1), y(2), \ldots) \in E$ следующим образом:

$$y(1) = f_1(\vec{x}(1)),$$

$$y(2) = f_2(\vec{x}(1), \vec{x}(2)),$$
...
$$y(h) = f_h(\vec{x}(1), \vec{x}(2), \dots, \vec{x}(h)),$$

$$y(h+1) = f_h(\vec{x}(2), \vec{x}(3), \dots, \vec{x}(h+1)),$$
...
$$y(h+i) = f_h(\vec{x}(1+i), \vec{x}(2+i), \dots, \vec{x}(h+i)),$$
...

где $f_j:(E_2{}^n)^j\longrightarrow E_2$ для $j=1,2,\ldots,h,$ причём, если $h\geqslant 2,$ то существует набор векторов

$$\vec{a}(1), \vec{a}(2), \dots, \vec{a}(h) \in E_2^n$$

такой, что

$$f_h(\vec{a}(1), \vec{a}(2), \dots, \vec{a}(h)) \neq f_{h-1}(\vec{a}(2), \dots, \vec{a}(h)).$$

Тогда T будем называть автоматом без обратной связи высоты h. Функции f_j для $j=1,\ldots,h-1$ определяют выход автомата в моменты времени от 1 до h-1, а функция f_h определяет выход автомата, начиная с момента времени h. Множество всех автоматов без обратной связи обозначим \mathcal{P}_a , а множество всех автоматов без обратной связи высоты не более h обозначим \mathcal{P}_a^h . Для p>h определим

$$f_p(\vec{x}(1), \vec{x}(2), \dots, \vec{x}(p)) = f_h(\vec{x}(p-h+1), \vec{x}(p-h+2), \dots, \vec{x}(p)).$$

Таким образом, для любого s функция f_s определяет выход автомата в момент времени s.

Пусть $M \subset \mathcal{P}_a$, обозначим через [M] множество всех автоматов без обратной связи, получающихся из M с помощью операции суперпозиции. Множество M называется полным, если $[M] = \mathcal{P}_a$.

Выход автомата в моменты времени $t \geqslant h$ зависит только от функции f_h и не зависит от функций $f_1, f_2, \ldots, f_{h-1}$, поэтому для изучения свойств автомата при $t \geqslant h$ введем искусственное отображение. Для произвольного автомата T высоты h с n входами определим отображение $G_T: E^n \longrightarrow E$. Для $\vec{a}(1), \vec{a}(2), \vec{a}(3), \ldots \in E_2^n$

$$G_T(\vec{a}(1), \vec{a}(2), \vec{a}(3), \ldots) = \beta$$
, где

$$\beta(i) = f_h(\vec{a}(i+h-1), \vec{a}(i+h-2), \dots, \vec{a}(i+1), \vec{a}(i))$$
 для любого i .

В этом случае автомат преобразует сверхслова не сначала, а как бы с конца.

Так как G_T имитирует поведение автомата T только в обратную сторону, то G сохраняет суперпозицию, то есть для любых автоматов $T(x_1,\ldots,x_n),\ T_1(x_1,\ldots,x_{m_1}),\ T_2(x_1,\ldots,x_{m_2}),\ \ldots,\ T_n(x_1,\ldots,x_{m_n})\in \mathcal{P}_a$, автомата

$$T_0(x_{1,1},\ldots,x_{1,m_1},\ldots,x_{n,1},\ldots,x_{n,m_n}) =$$

= $T(T_1(x_{1,1},\ldots,x_{1,m_1}),\ldots,T_n(x_{n,1},\ldots,x_{n,m_n})),$

а также для любых $\alpha_{1,1},\ldots,\alpha_{1,m_1},\ldots,\alpha_{n,1},\ldots,\alpha_{n,m_n}\in E$ выполняется равенство

$$G_{T_0}(\alpha_{1,1},\ldots,\alpha_{1,m_1},\ldots,\alpha_{n,1},\ldots,\alpha_{n,m_n}) = G_T(G_{T_1}(\alpha_{1,1},\ldots,\alpha_{1,m_1}),\ldots,G_{T_n}(\alpha_{n,1},\ldots,\alpha_{n,m_n})).$$

Каждую булевскую функцию можно считать автоматом высоты 1. Пусть $P_2 \subset M \subset \mathcal{P}_a, \ M \backslash P_2$ — конечное множество. В работе рассматривается проблема полноты для систем M указанного вида.

Теперь опишем 5 семейств классов автоматов в \mathcal{P}_a . Обозначим через h(T) высоту автомата T, а через n(T) число входов автомата T.

Семейство \mathfrak{A} . Это семейство состоит из классов M_{pq} , где $1 \leq p < q$. M_{pq} — множество автоматов T таких, что из равенства $\vec{x}(p) = \vec{x}(q)$ следует равенство y(p) = y(q).

Семейство 3. Это семейство состоит из одного класса $M_{1\infty}$. $M_{1\infty}$ — множество автоматов T таких, что для любого $\vec{a} \in E_2^{n(T)}$

$$f_{h(T)}(\vec{a}, \vec{a}, \dots, \vec{a}) = f_1(\vec{a}).$$

Семейство $\mathfrak C$ **.** Это семейство состоит из классов $S_p, p \geqslant 2$. S_p — множество автоматов T таких, что для любых $\vec a_1, \dots, \vec a_p, \vec b \in E_2^{n(T)}$

$$f_p(\vec{a}_1, \vec{a}_2, \dots, \vec{a}_{p-2}, \vec{a}_{p-1}, \vec{a}_p) = f_p(\vec{a}_1, \vec{a}_2, \dots, \vec{a}_{p-2}, \vec{b}, \vec{a}_p).$$

Другими словами, выход автоматов из S_p в момент времени p не зависит от входа в момент времени p-1.

Семейство \mathfrak{D} . Это семейство состоит из 4 классов $L_1,\,L_2,\,L_3,\,L_4$. L_1 — множество автоматов T таких, что для любых $\vec{a},\vec{b}\in E_2^{n(T)}$

$$f_{h(T)}(\vec{a}, \vec{a}, \dots, \vec{a}, \vec{a}, \vec{a}, \vec{a}) = f_{h(T)}(\vec{a}, \vec{a}, \dots, \vec{a}, \vec{a}, \vec{b}, \vec{a}).$$

 L_2 — множество автоматов T таких, что для любых $\vec{a}, \vec{b} \in E_2^{n(T)}$ $f_{h(T)}(\vec{a}, \vec{a}, \dots, \vec{a}, \vec{a}, \vec{d}, \vec{b}) = f_{h(T)}(\vec{a}, \vec{a}, \dots, \vec{a}, \vec{a}, \vec{b}, \vec{b}).$

 L_3 — множество автоматов T таких, что для любых $\vec{a}, \vec{b} \in E_2^{n(T)}$ $f_{h(T)}(\dots, \vec{a}, \vec{b}, \vec{a}, \vec{b}, \vec{a}, \vec{b}) = f_{h(T)}(\dots, \vec{b}, \vec{a}, \vec{b}, \vec{a}, \vec{b}, \vec{b}).$

 L_4 — множество автоматов T таких, что для любых $\vec{a}, \vec{b} \in E_2^{n(T)}$ $f_{h(T)}(\vec{a}, \vec{a}, \dots, \vec{a}, \vec{a}, \vec{b}) = f_{h(T)}(\vec{b}, \vec{b}, \dots, \vec{b}, \vec{b}, \vec{b}).$

Семейство \mathfrak{E} . Пусть $d\geqslant 3,\ C\subset E_2{}^d$ и для любых $\gamma,\delta\in C$ слова $\overline{\gamma},\ \gamma\vee\delta,\ \gamma\wedge\delta$ принадлежат C (где все операции выполняются поэлементно). Пусть также для какого-то e в C есть слово с наименьшим периодом e, но C содержит не все слова периода e; C содержит слова 0^d и 1^d . Тогда пара (d,C) определяет класс R_d^C : автомат T с n входами принадлежит R_d^C тогда и только тогда, когда для любых $\alpha_1,\alpha_2,\ldots,\alpha_n\in C$ выполняется $G_T(\alpha_1^\infty,\alpha_2^\infty,\ldots,\alpha_n^\infty)=\delta^\infty$, где $\delta\in C$. Семейство $\mathfrak E$ состоит из всех таких классов R_d^C .

Теорема 1. Верны следующие утверждения:

- 1) M_{pq} предполный класс в \mathcal{P}_a для любых натуральных p u q таких, что p < q.
- 2) $M_{1\infty}$ предполный класс в \mathcal{P}_a .
- 3) S_p предполный класс в \mathcal{P}_a для любого натурального $p\geqslant 2.$
- 4) L_1, L_2, L_3, L_4 предполные классы в \mathcal{P}_a .
- 5) R_d^C замкнутый класс в \mathcal{P}_a , не совпадающий с \mathcal{P}_a . Пусть к тому же выполнены следующие условия:
 - а) если $\alpha \in C$ имеет наименьший период d и $(\circlearrowright_r \alpha) \in C$, тогда для любого $\beta \in C$ $(\circlearrowright_r \beta) \in C$.
 - б) если C содержит слово c наименьшим периодом e, 1 < e < d, то C содержит все слова периода e.

Tогда R_d^C — nредполный класс в \mathcal{P}_a .

6) Если R_d^C — не предполный класс, то существует d',делящее d, $u \ C' \subset E_2^{d'}$ такое, что $R_d^C \subset R_{d'}^{C'}$ и $R_{d'}^{C'}$ — предполный класс.

Теорема 2. Пусть B- система автоматов из $\mathcal{P}_a{}^h, P_2 \subset B$. Система B полна тогда и только тогда, когда B не является подмножеством M_{pq} для $1 \leqslant p < q \leqslant 2h, M_{1\infty}, S_p$ для $2 \leqslant p \leqslant h, L_1, L_2, L_3, L_4, R_d^C$ для $d < (2h^2)^{4h}$.

2. Доказательства утверждений

Следующие определения нужны для доказательства теорем.

Определение 1. Автомат с n входами $T \in \mathcal{P}_a$ сохраняет $A \subset E_2{}^k$, если для любых $\alpha_1, \alpha_2, \ldots, \alpha_n \in A$ выполняется $T(\alpha_1, \alpha_2, \ldots, \alpha_n) \in A$. Класс всех автоматов из \mathcal{P}_a , сохраняющих A, обозначим $\mathcal{U}(A)$.

Определение 2. Автомат с n входами $T \in \mathcal{P}_a$ сохраняет $A \subset E$, если для любых $\alpha_1, \alpha_2, \ldots, \alpha_n \in A$ выполняется $T(\alpha_1, \alpha_2, \ldots, \alpha_n) \in A$. Класс всех автоматов из \mathcal{P}_a , сохраняющих A, обозначим $\mathcal{U}(A)$.

Определение 3. Автомат с n входами $T \in \mathcal{P}_a$ G-сохраняет $A \subset E_2{}^k$, если для любых $\alpha_1, \alpha_2, \ldots, \alpha_n \in A$ выполняется

 $G_T(\alpha_1^\infty,\alpha_2^\infty,\ldots,\alpha_n^\infty)=\beta^\infty$ для какого-то $\beta\in A$. Класс всех автоматов из \mathcal{P}_a , G-сохраняющих A, обозначим $\mathcal{U}_G(A)$.

Определение 4. Автомат с n входами $T \in \mathcal{P}_a$ G-сохраняет $A \subset E$, если для любых $\alpha_1, \alpha_2, \ldots, \alpha_n \in A$ выполняется $G_T(\alpha_1, \alpha_2, \ldots, \alpha_n) \in A$. Класс всех автоматов из \mathcal{P}_a , G-сохраняющих A, обозначим $\mathcal{U}_G(A)$.

Легко проверить, что верна следующая лемма.

Лемма 1. Для произвольных $A \subset E_2^k$, $B \subset E$, классы сохранения $\mathcal{U}(A)$, $\mathcal{U}_G(A)$, $\mathcal{U}(B)$, $\mathcal{U}_G(B)$ замкнуты.

Автомат с одним входом такой, что в любой момент времени y(t) = x(t), будем называть тождественным автоматом. Перейдём к доказательству теоремы 1. Она состоит из следующих утверждений.

Утверждение 1. M_{pq} — $npe dnonhый класс в <math>\mathcal{P}_a$ для любых натуральных p u q makux, что p < q.

Доказательство утверждения 1. Рассмотрим множество D слов $\alpha \in E_2{}^q$ таких, что $\alpha(p) = \alpha(q)$. Легко проверить, что M_{pq} совпадает с $\mathcal{U}(D)$, следовательно, M_{pq} — замкнутый класс. При этом очевидно, что он не полный, так как единичная задержка не сохраняет D.

Теперь пусть есть автомат с n входами $T \notin M_{pq}$, докажем, что $[M_{pq} \cup \{T\}] = \mathcal{P}_a$. Так как $T \notin M_{pq}$, то для каких-то слов $\alpha_1, \alpha_2, \ldots, \alpha_n \in D$ выполняется $T(\alpha_1, \alpha_2, \ldots, \alpha_n) \notin D$. Для каждого α_i рассмотрим автомат без входов R_i высоты $\leqslant q+1$, возвращающий выходную последовательность $\alpha_i 0^\infty$. Очевидно, что все они принадлежат \mathcal{P}_a и M_{pq} . Тогда автомат $T_0 = T(R_1, R_2, \ldots, R_n)$ — автомат без входов, возвращающий в моменты времени p и q различные значения. Теперь определим автомат Q с двумя входами высоты $\leqslant q+1$. Во все моменты времени кроме q он работает как единичная задержка того, что подаётся на первый вход. Определим функцию $f_q(\gamma_1, \gamma_2)$ этого автомата. Если $\gamma_1, \gamma_2 \in D$, то $f_q(\gamma_1, \gamma_2) = f_p(]_p \gamma_1,]_p \gamma_2$), иначе $f_q(\gamma_1, \gamma_2) = \gamma_1(q-1)$. Тогда нетрудно убедиться, что $Q \in M_{pq}$, а также $Q(x, T_0)$ во все моменты времени работает как единичная задержка. Но $P_2 \subset M_{pq}$, значит, $[M_{pq} \cup \{T\}] = \mathcal{P}_a$ и утверждение доказано.

Утверждение 2. $M_{1\infty}$ — предполный класс в \mathcal{P}_a .

Доказательство утверждения 2. Очевидно, что $P_2 \subset M_{1\infty}$. Рассмотрим множество D сверхслов, представимых в виде $a\gamma a^\infty$ для какого-то $a \in E_2$ и какого-то слова γ . Легко проверить, что $M_{1\infty}$ совпадает с $\mathcal{U}(D)$, следовательно, $M_{1\infty}$ — замкнутый класс. При этом очевидно, что он не полный, так как единичная задержка не сохраняет D.

Докажем, что он предполный. Пусть есть автомат с n входами $T \notin M_{1\infty}$, докажем, что $[M_{1\infty} \cup \{T\}] = \mathcal{P}_a$. Так как $T \notin M_{1\infty}$, то существуют $a_1, a_2, a_3, \ldots, a_n \in E_2$ и слово γ такие, что $T(a_1^{\infty}, a_2^{\infty}, \ldots, a_n^{\infty}) = b\gamma c^{\infty}$, причём $b \neq c$. Пусть автомат T имеет высоту h, тогда слово γ имеет длину не больше h.

Для $i=1,2,\ldots,n$ обозначим $T_i\in M_{1\infty}$ — автомат без входов, возвращающий во все моменты времени константу a_i . Тогда автомат $T_0=T(T_1,T_2,\ldots,T_n)$ — автомат без входов такой, что $T_0()=b\gamma c^\infty$. Так как $b\neq c$ и в $M_{1\infty}$ есть отрицание, то можно считать, что b=0, c=1. Также в $M_{1\infty}$, очевидно, есть автомат R без входов такой, что $R()=01^h0^\infty$. Теперь рассмотрим автомат $Q\in M_{1\infty}$ с одним входом и высотой 2, который во все моменты времени кроме первого работает как единичная задержка, а в первый момент времени как тождественный автомат. Нетрудно убедиться, что автомат $Q(x)\wedge(R\vee T_0)$ является единичной задержкой. Таким образом, $[M_{1\infty}\cup\{T\}]=\mathcal{P}_a$ и утверждение доказано.

Утверждение 3. S_p — npednonhый класс в \mathcal{P}_a для любого натурального $p \geqslant 2$.

Доказательство. Покажем, что класс S_p замкнут. Пусть у нас есть автоматы $T_1, T_2, \ldots, T_n \in S_p$, а также автомат с n входами $T \in S_p$. Обозначим $T_0 = T(T_1, T_2, \ldots, T_n)$. Пусть T_0 имеет n_0 входов. Рассмотрим произвольные слова $\alpha_1, \alpha_2, \ldots, \alpha_{n_0} \in E_2^p$ и $\beta_1, \beta_2, \ldots, \beta_{n_0} \in E_2^p$ такие, что для любого i слово α_i может отличаться от слова β_i только по (p-1)-ому элементу. Подадим на входы во все автоматы T_j сначала $\alpha_1, \alpha_2, \ldots, \alpha_{n_0}$, а потом $\beta_1, \beta_2, \ldots, \beta_{n_0}$. На выходе получим слова $\gamma_1, \gamma_2, \ldots, \gamma_n \in E_2^p$ и $\delta_1, \delta_2, \ldots, \delta_n \in E_2^p$ соответственно. Для любого j автомат $T_j \in S_p$, поэтому слово γ_j может отличаться от δ_j только по (p-1)-ому элементу. Теперь подадим на вход в T сначала слова $\gamma_1, \gamma_2, \ldots, \gamma_n$, а потом $\delta_1, \delta_2, \ldots, \delta_n$. Получим слова α и β соот-

ветственно, которые опять же могут отличаться только по (p-1)-ому элементу. А отсюда и следует, что $T_0 \in S_p$. То есть S_p — замкнутый класс. При этом очевидно, что он не полный, так как не содержит единичную задержку.

Докажем, что S_p — предполный класс. Очевидно $P_2 \subset S_p$. Пусть есть автомат $T \notin S_p$ с n входами, докажем, что $[S_p \cup \{T\}] = \mathcal{P}_a$. Так как $T \notin S_p$, то существуют $\alpha_1, \alpha_2, \dots, \alpha_n \in E_2^p$ и $\beta_1, \beta_2, \dots, \beta_n \in E_2^p$ такие, что α_i может отличаться от β_i только по (p-1)-ому элементу, а слова $T(\alpha_1, \alpha_2, \dots, \alpha_n)$ и $T(\beta_1, \beta_2, \dots, \beta_n)$ отличаются по p-ому элементу. Для каждого α_i рассмотрим автомат $R_i \in S_p$ без входов высоты $\leqslant p+1$, возвращающий выходную последовательность $\alpha_i 0^\infty$. Пусть I — тождественный автомат, а $T_{p-1} \in S_p$ — автомат без входов, возвращающий выходную последовательность $0^{p-2}10^{\infty}$. Для i = 1, 2, ..., n обозначим автомат с одним входом $Q_i(x) =$ $R_i \oplus (I(x) \land T_{p-1}) \in S_p$, если $\alpha_i \neq \beta_i$, и $Q_i = R_i$ иначе(где \oplus — сложение по модулю 2). Тогда автомат $T_0(x) = T(Q_1(x), Q_2(x), \dots, Q_n(x))$ в момент времени p на выходе даёт x(p-1) или x(p-1). Так как в S_p есть отрицание, то можно считать, что на выходе мы имеем x(p-1). То есть в момент времени p этот автомат работает как единичная задержка.

Теперь рассмотрим автомат $Q \in S_p$ с двумя входами высоты $\leqslant p+1$. Во все моменты кроме p он работает как единичная задержка того, что подаётся на первый вход, а в момент времени p он выдаёт то, что подавалось на второй вход в момент времени p. Тогда нетрудно убедиться, что $Q(x,T_0(x))$ во все моменты времени работает как единичная задержка. Следовательно, $[S_p \cup \{T\}] = \mathcal{P}_a$ и утверждение доказано.

Утверждение 4. $L_1, L_2, L_3, L_4 - npednonhue$ классы в \mathcal{P}_a .

Доказательство утверждения 4. Сначала докажем для L_1, L_2 и L_3 .

Рассмотрим $D_1, D_2, D_3 \subset E$. D_1 — множество сверхслов вида aba^{∞}, D_2 — множество сверхслов вида bba^{∞}, D_3 — множество сверхслов вида $b(ba)^{\infty}$.

Нетрудно убедиться, что L_i — класс G-сохранения D_i для i=1,2,3. Значит, L_1 , L_2 и L_3 — замкнутые классы. При этом они не совпадают с \mathcal{P}_a , так как единичная задержка не G-сохраняет D_i .

Докажем, что L_1, L_2 и L_3 — предполные классы. Пусть автомат T с n входами не принадлежит L_i . Докажем, что $[L_i \cup \{T\}] = \mathcal{P}_a$. Пусть высота автомата T равна h, а F — множество слов γ длины h+2 таких, что для какого-то $\delta \in E$ сверхслово $inv(\gamma)\delta \in D_i$. Так как T не G-сохраняет D_i , то существуют $\alpha_1, \alpha_2, \ldots, \alpha_n \in D_i$ такие, что $G_T(\alpha_1,\alpha_2,\ldots,\alpha_n)=\beta\notin D_i$. Для $j=1,2,\ldots,n$ рассмотрим автоматы высоты 1 с одним входом R_i . Если $\alpha_i(2) = 0$, $\alpha_i(3) = 0$, то R_i выдаёт константу 0 в любой момент времени, если $\alpha_i(2) = 1$, $\alpha_i(3) = 1$, то R_i выдаёт константу 1 в любой момент времени, если $\alpha_i(2) = 0$, $\alpha_i(3) = 1$, то R_i тождественный автомат, если $\alpha_i(2) = 1$, $\alpha_i(3) = 0$, то R_i отрицание тождественного автомата. Тогда нетрудно убедиться, что $T_0(x) = T(R_1(x), R_2(x), \dots, R_n(x)) \notin L_i$. Рассмотрим автомат $Q \in$ L_i с 3 входами высоты $\leq h+2$. В моменты времени с 1 по h+1 автомат работает как единичная задержка того, что подаётся на первый вход. Определим функцию f_{h+2} этого автомата. $f_{h+2}(\gamma_1, \gamma_2, \gamma_3)$ равно $\gamma_1(h)$, если $\gamma_1, \gamma_2, \gamma_3 \in F$, и равно $\gamma_1(h+1)$ иначе. Нетрудно убедиться, что $Q \in L_i$. Покажем, что автомат $Q_0(x) = Q(x, T_0(x), T_0(\overline{x}))$ является единичной задержкой.

Рассмотрим произвольное слово γ длины $t\geqslant h+2$ и докажем, что слово $\epsilon=Q_0(\gamma)$ заканчивается на $\gamma(t-1)$. Пусть $\alpha_1=[_{h+2}\gamma,$ $\alpha_2=[_{h+2}T_0(\gamma),$ и $\alpha_3=[_{h+2}T_0(\overline{\gamma}).$ Если $\alpha_1\notin F,$ $\alpha_2\notin F$ или $\alpha_3\notin F,$ то утверждение очевидно. Предположим, что это не так. Если α_1 равно 0^{h+2} или 1^{h+2} , то $\epsilon(t)=\alpha_1(h)=\alpha_1(h+1)=\gamma(t-1).$ Пусть $\alpha_1\in F,$ $\alpha_1\neq 0^{h+2},$ $\alpha_1\neq 1^{h+2}.$ Так как $T_0\notin L_i,$ то α_2 или α_3 не принадлежит F, а мы предположили, что это не так. Значит, в $[L_i\cup\{T\}]$ есть единичная задержка и $[L_i\cup\{T\}]=\mathcal{P}_a.$

Теперь докажем, что L_4 замкнут. Рассмотрим автоматы $T_1, T_2, \ldots, T_n \in L_4$, а также автомат с n входами $T \in L_4$. Обозначим $T_0 = T(T_1, T_2, \ldots, T_n)$. Докажем, что $T_0 \in L_4$. Для простоты изложения будем считать, что автоматы T_1, T_2, \ldots, T_n — автоматы с одним входом. Пусть $a_1, a_2, a_3, \ldots, a_n, b_1, b_2, b_3, \ldots, b_n \in E_2$, тогда для для любого i найдутся такие $c_i, d_i \in E_2$, что $G_{T_i}(b_i a_i^\infty) = c_i d_i^\infty$, $G_{T_i}(b_i^\infty) = c_i^\infty$. Так как $T \in L_4$, то найдутся такие $e, f \in E_2$, что $G_T(c_1 d_1^\infty, c_2 d_2^\infty, \ldots, c_n d_n^\infty) = e f^\infty$, $G_{T_i}(c_1^\infty, c_2^\infty, \ldots, c_n^\infty) = e^\infty$. То есть мы доказали, что для произвольных a_i, b_i сверхслово $G_{T_0}(a_1 b_1^\infty, a_2 b_2^\infty, \ldots, a_n b_n^\infty) = e f^\infty$, а

сверхслво $G_{T_0}(a_1^{\infty}, a_2^{\infty}, \dots, a_n^{\infty}) = e^{\infty}$. Значит, $T_0 \in L_4$ и класс L_4 замкнутый. При этом очевидно, что он не полный, так как не содержит единичную задержку.

Докажем, что L_4 — предполный класс. Пусть автомат T с n входами не принадлежит L_4 . Докажем, что $[L_4 \cup \{T\}] =$ \mathcal{P}_a . Пусть высота автомата T равна h. Так как Tто существуют такие $a_1, a_2, a_3, \ldots, a_n, b_1, b_2, b_3, \ldots, b_n \in E_2$, что $G_T(b_1 a_1^{\infty}, b_2 a_2^{\infty}, \dots, b_n a_n^{\infty}) = cd^{\infty}, \ G_T(b_1^{\infty}, b_2^{\infty}, \dots, b_n^{\infty}) = e^{\infty},$ причём $c \neq e$. Для $j = 1, 2, \dots, n$ рассмотрим автоматы высоты 1 с одним входом R_j . Если $a_j = 0$, $b_j = 0$, то R_j выдаёт константу 0 в любой момент времени, если $a_j = 1, b_j = 1$, то R_j выдаёт константу 1 в любой момент времени, если $a_j=0,\ b_j=1,\ {
m To}$ R_{i} тождественный автомат, если $a_{i} = 1, b_{i} = 0$, то R_{i} отрицание тождественного автомата. Тогда нетрудно убедиться, что автомат $T_0(x) = T(R_1(x), R_2(x), \dots, R_n(x)) \notin L_4$. Пусть $T_0(01^{\infty}) = c_1 d_1^{\infty}$, a $T_0(10^{\infty}) = c_2 d_2^{\infty}$. Так как $T_0 \notin L_4$, то $c_1 \neq d_2$ или $c_2 \neq d_1$. Поэтому найдётся булева функция $f(x_1, x_2, x_3)$ такая, что $f(0, c_1, c_2) = 1$, $f(1,d_1,d_2)=1, f(1,c_2,c_1)=0, f(0,d_2,d_1)=0.$ Рассмотрим автомат $S(x) = f(x, T_0(x), T_0(\overline{x}))$. Нетрудно убедиться, что $G_S(01^\infty) = 1^\infty$, а $G_S(10^{\infty}) = 0^{\infty}$. Заметим, что высота автомата S меньше либо равна высоте автомата T, то есть меньше либо равна h.

Пусть F — множество слов γ длины h+1 вида a^hb , где $a,b\in E_2$. Рассмотрим автомат $Q\in L_4$ с 2 входами высоты $\leqslant h+1$. В моменты времени с 1 по h автомат работает как единичная задержка того, что подаётся на первый вход. Определим функцию f_{h+1} этого автомата. $f_{h+1}(\gamma_1,\gamma_2)$ равно $\gamma_2(h+1)$, если $\gamma_1\in F$, и равно $\gamma_1(h)$ иначе. Нетрудно убедиться, что $Q\in L_4$. Покажем, что автомат $Q_0(x)=Q(x,S(x))$ является единичной задержкой. Рассмотрим произвольное слово γ длины $t\geqslant h+1$ и докажем, что слово $\epsilon=Q_0(\gamma)$ заканчивается на $\gamma(t-1)$. Если $f_{h+1}\gamma\notin F$, то это очевидно. Если $f_{h+1}\gamma=a^hb\in F$, то f_h 0 во все моменты времени работает как единичная задержка. То есть в f_h 1 есть единичная задержка и f_h 2 утверждение доказано.

Утверждение 5. R_d^C — замкнутый класс в \mathcal{P}_a , не совпадающий с \mathcal{P}_a . Пусть к тому же выполнены следующие условия:

- 1) если $\alpha \in C$ имеет наименьший период d и $(\circlearrowright_r \alpha) \in C$, тогда для любого $\beta \in C$ $(\circlearrowright_r \beta) \in C$.
- 2) если C содержит слово c наименьшим периодом e, 1 < e < d, то C содержит все слова периода e.

Tогда R_d^C — nредполный класс в \mathcal{P}_a .

Доказательство утверждения 5. Класс R_d^C совпадает с $\mathcal{U}_G(C)$, а значит, из леммы 1 следует, что R_d^C замкнутый класс. Также очевидно, что $P_2 \subset R_d^C$. Покажем, что он не совпадает с \mathcal{P}_a . По определению существует $\alpha \in C$ с наименьшим периодом e и слово $\beta \notin C$ с периодом e. Построим автомат $T \notin R_d^C$ с одним входом высоты $\leqslant d$. Определим функцию f_d соответствующую автомату T. $f_d(a(1), a(2), \ldots, a(d)) = 1$, тогда и только тогда, когда $a(d)a(d-1)\ldots a(1) = \circlearrowright_{r-1} \alpha$ и $\beta(r) = 1$ для какого-то $1 \leqslant r \leqslant d$. Тогда очевидно, что $G_T(\alpha^\infty) = \beta^\infty$, а значит, $T \notin R_d^C$ и $R_d^C \neq \mathcal{P}_a$.

Теперь докажем вторую часть утверждения. Будем считать, что если $\alpha \in C$ имеет наименьший период d и $(\circlearrowright_r \alpha) \in C$, тогда для любого $\beta \in C$ $(\circlearrowright_r \beta) \in C$. А также если C содержит слово с наименьшим периодом e, 1 < e < d, то C содержит все слова периода e. Докажем, что R_d^C — предполный класс в \mathcal{P}_a . По определению найдется такое e, что в C есть слово α с наименьшим периодом e, но C содержит не все слова периода e. Отсюда, а также из условия 2 очевидно следует, что e = d, то есть в C есть слово с наименьшим периодом d.

Докажем, что для любого слова $\alpha \in C$ с наименьшим периодом d и любого слова $\beta \in C$ существует автомат $T_{\alpha\beta} \in R_d^C$ с одним входом высоты $\leqslant d$ такой, что $G_{T_{\alpha\beta}}(\alpha^{\infty}) = \beta^{\infty}$. Определим функцию f_d , соответствующую автомату $T_{\alpha\beta}$. $f_d(a(1),a(2),\ldots,a(d))=1$ тогда и только тогда, когда $a(d)a(d-1)\ldots a(1)=\circlearrowright_{r-1}\alpha$ и $\beta(r)=1$ для какого-то $1\leqslant r\leqslant d$. Покажем, что автомат $T_{\alpha\beta}$ G-сохраняет G. Пусть $G \in C$, $G \not= \circlearrowleft_r \alpha$ для любого $G \in C$, $G \in C$, G

Пусть автомат T с n входами высоты h не принадлежит R_d^C . Тогда существуют такие $\alpha_1, \alpha_2, \ldots, \alpha_n \in C$, что $G_T(\alpha_1^{\infty}, \alpha_2^{\infty}, \ldots, \alpha_n^{\infty}) = \delta^{\infty}, \delta \notin C$. Для любого $\alpha \in C$ с наименьшим периодом d построим автомат $Q_{\alpha}(x) = T(T_{\alpha\alpha_1}(x), T_{\alpha\alpha_2}(x), \ldots, T_{\alpha\alpha_n}(x))$. Нетрудно убедиться,

что $G_{Q_{\alpha}}((\alpha)^{\infty}) = \delta^{\infty}$. Для $\alpha \notin C$ и α с наименьшим периодом меньше d будем считать, что автомат Q_{α} — тождественная константа 0.

Пусть F_r — множество слов γ длины h+2d таких, что для каких-то $\delta \in E, \ \zeta \in C$ сверхслово $(inv(\gamma))\delta = (\circlearrowright_r \zeta)^\infty$. Другими словами, если слово γ перевернуть, то оно является куском какого-то сверхслова ζ^∞ , причём $\zeta \in C$, а сдвиг равен r. Если в определении F_r потребовать, чтобы наименьший период ζ был равен d, то мы определим множество F'_r .

Определим автомат $R \in R_d^C$ с 2^d+1 входом высоты $\leqslant h+2d$. В моменты времени с 1 по h+2d-1 автомат работает как единичная задержка того, что подаётся на вход номер 2^d+1 . Определим функцию f_{h+2d} этого автомата на произвольных словах $\alpha_1,\alpha_2,\ldots,\alpha_{2^d+1}\in E_2^{h+2d}$. $f_{h+2d}(\alpha_1,\alpha_2,\ldots,\alpha_{2^d+1})$ равно 0, если существует такое $0\leqslant r\leqslant d-1$, что для любого $1\leqslant j\leqslant 2^d$ слово $\alpha_j\in F_r$, а $\alpha_{2^d+1}\in F_r'$, и равно $\alpha_{2^d+1}(h+2d-1)$ иначе. Нетрудно убедиться, что $R\in R_d^C$.

Пронумеруем элементы E_2^d числами от 1 до 2^d . Построим автомат W с помощью операции суперпозиции из вышеперечисленных автоматов. На i-ый вход автомата R подадим выход из автомата Q_α , где α соответствует числу i. На вход в каждый автомат Q_α , а также на 2^d+1 вход автомата R будем подавать выход с тождественного автомата.

Покажем, что W работает как единичная задержка. Рассмотрим произвольное слово γ длины $t\geqslant h+2d$ и подадим его на вход автомата W. Пусть на i-ый вход автомата R поступает в этом случае слово α_i . Докажем, что слово $W(\gamma)$ заканчивается на $\gamma(t-1)$.

Это очевидно, если не существует такого $0\leqslant r\leqslant d-1$, что для любого $1\leqslant j\leqslant 2^d$ слово $[_{h+2d}\alpha_j\in F_r,$ а $[_{h+2d}\alpha_{2^d+1}\in F_r']$. Значит, такое r существует. Для какого-то $\alpha\in C$ с наименьшим периодом d верно равенство $]_dinv(\gamma)=\circlearrowright_r\alpha$. Рассмотрим $1\leqslant j\leqslant 2^d$, соответствующее этому α . Так как высота автомата $Q_\alpha\leqslant h+d$, то легко убедиться, что $[_{h+2d}Q_\alpha(\gamma)\notin F_r]$. Следовательно, $[_{h+2d}\alpha_j\notin F_r]$, получили противоречие. Значит, $W(\gamma)$ заканчивается на $\gamma(t-1)$ и автомат W во все моменты времени работает как единичная задержка. То есть $[R_d^C\cup\{T\}]=\mathcal{P}_a$ и утверждение доказано.

Утверждение 6. Если R_d^C — не предполный класс, то существует d', делящее d, u $C' \subset E_2{}^{d'}$ такое, что $R_d^C \subset R_{d'}^{C'}$ и $R_{d'}^{C'}$ — предполный класс.

Доказательство утверждения 6. Обозначим $d_0=d,\ C_0=C$. Будем строить последовательность $R_{d_0}^{C_0}\subset R_{d_1}^{C_1}\subset R_{d_2}^{C_2}\subset\dots$, где d_1 делит $d_0,\ d_2$ делит $d_1,\$ и так далее.

Пусть мы уже построили d_i и C_i , причём $R_{d_i}^{C_i}$ — не предполный класс. Построим d_{i+1} и C_{i+1} . Возможны два варианта:

- 1) Для какого-то $\alpha \in C_i$ с наименьшим периодом d_i слово $\circlearrowright_r \alpha \in C_i$, но для $\beta \in C_i$ слово $\circlearrowright_r \beta \notin C_i$. Тогда $d_{i+1} = d_i$. Рассмотрим множество $C_{i+1} \subset C_i$, состоящее из всех таких $\gamma \in E_2{}^{d_i}$, что для какого-то автомата с одним входом $T \in R_{d_i}^{C_i}$ выполняется $G_T(\alpha^\infty) = \gamma^\infty$. Покажем, что $C_{i+1} \neq C_i$. Предположим, что это не так, тогда α , $(\circlearrowright_r \alpha)$, $\beta \in C_{i+1}$, $(\circlearrowright_r \beta) \notin C_{i+1}$. Так как $\beta \in C_{i+1}$, то для какого-то автомата с одним входом $T \in R_{d_i}^{C_i}$ выполняется $G_T(\alpha^\infty) = \beta^\infty$. Аналогично, так как $\circlearrowleft_r \alpha \in C_{i+1}$, то для какого-то автомата $R \in R_{d_i}^{C_i}$ выполняется $G_R((\alpha)^\infty) = (\circlearrowright_r \alpha)^\infty$. Значит, для автомата с одним входом $T_0(x) = T(R(x))$ верно равенство $G_{T_0}((\alpha)^\infty) = (\circlearrowright_r \beta)^\infty$. Но $(\circlearrowright_r \beta) \notin C_{i+1}$, получили противоречие, значит, $C_{i+1} \neq C_i$. Так как $C_{i+1} \subset C_i$ и $P_2 \subset R_{d_i}^{C_i}$, то нетрудно убедиться, что d_{i+1} и C_{i+1} определяют замкнутый класс $R_{d_{i+1}}^{C_{i+1}}$, причём $R_{d_i}^{C_i} \subset R_{d_{i+1}}^{C_{i+1}}$.
- 2) C_i содержит слово с наименьшим периодом e, $1 < e < d_i$, но C_i содержит не все слова периода e, тогда $d_{i+1} = e$. Рассмотрим множество $C_{i+1} \subset E_2^{d_{i+1}}$, состоящее из всех таких $\gamma \in E_2^{d_{i+1}}$, что $\gamma^{d_i/d_{i+1}} \in C_i$. Так как для любого автомата T отображение G_T переводит сверхслова с периодом d_{i+1} в сверхслова с периодом d_{i+1} , то нетрудно убедиться, что d_{i+1} и C_{i+1} определяют замкнутый класс $R_{d_{i+1}}^{C_{i+1}}$, причём $R_{d_i}^{C_i} \subset R_{d_{i+1}}^{C_{i+1}}$.

То есть возможны два варианта: $d_{i+1} < d_i$ или $C_{i+1} \subset C_i$ и $d_{i+1} = d_i$. Это значит, что в последовательности $R_{d_0}^{C_0} \subset R_{d_1}^{C_1} \subset R_{d_2}^{C_2} \subset \ldots$ ни один элемент не повторяется и эта последовательность конечная, потому что различный классов $R_{\widetilde{J}}^{\widetilde{C}}$ с $\widetilde{d} \leqslant d$ конечное число. Осталось в

качестве d' и C' взять последний элемент этой последовательности. Утверждение доказано.

Доказательство теоремы 2 основывается на следующих леммах.

Лемма 2. Пусть $\mathfrak{Z}-$ система подмножеств множества всех натуральных чисел \mathbb{N} такая, что если $N_1,N_2\in\mathfrak{Z},$ то $\mathbb{N}\setminus N_1,N_1\cap N_2,N_1\cup N_2\in\mathfrak{Z}.$ Тогда \mathbb{N} можно разбить на непересекающиеся множества $\mathbb{N}=M_1\sqcup M_2\sqcup M_3\sqcup\ldots$ так, что для любого $C\in\mathfrak{Z}$ и любого конечного множества $S\subset\mathbb{N}$ существует такое $D=M_{i_1}\cup\ldots\cup M_{i_t},$ что $D\cap S=C\cap S.$ И наоборот, для любого $D=M_{i_1}\cup\ldots\cup M_{i_t}$ и любого конечного множества $S\subset\mathbb{N}$ существует такое $C\in\mathfrak{Z},$ что $D\cap S=C\cap S.$

Доказательство. Построим в явном виде последовательность множеств M_i .

$$M_1 = \{a | \forall K \in \mathfrak{Z} \quad (1 \in K \iff a \in K)\}.$$

Пусть мы уже построили множества $M_1, M_2, \ldots, M_{i-1}$. Построим M_i . Пусть c — наименьшее число в $\mathbb{N} \setminus M_1 \ldots \setminus M_{i-1}$. Если это множество пусто и такого c не найдётся, то в последовательности M_i больше нет элементов и она конечна. Иначе

$$M_i = \{a | \forall K \in \mathfrak{Z} \mid (c \in K \iff a \in K)\}.$$

Эти множества, очевидно, не пересекаются, а их объединение составляет \mathbb{N} .

Пусть $C\in \mathfrak{Z}$ и конечное множество $S\subset \mathbb{N}$. Выделим из последовательности M_i все такие множества M_j , что $M_j\cap S\cap C\neq\varnothing$. Очевидно, что их будет конечное число. Пусть это M_{i_1},\ldots,M_{i_t} , докажем, что для $D=M_{i_1}\cup\ldots\cup M_{i_t}$ выполняется $D\cap S=C\cap S$. Пусть $b\in C,b\in S$. Так как $\mathbb{N}=M_1\sqcup M_2\sqcup M_3\sqcup\ldots$, то $b\in M_j$ для какого-то j и $b\in M_j\cap S\cap C$, то есть $M_j\subset D$ и $b\in D$. Теперь пусть $b\in D,b\in S$. Докажем, что $b\in C$. Для какого-то $b\in M_j$. Так как $b\in M_j$ то найдётся $b\in M_j\cap S\cap C$. По определению

$$M_i = \{a | \forall K \in \mathfrak{Z} \mid (c \in K \iff a \in K)\}.$$

Так как $d \in C$, то $c \in C$, а значит, $b \in C$. То есть мы доказали, что $D \cap S = C \cap S$.

Теперь пусть $D=M_{i_1}\cup\ldots\cup M_{i_t}$ и конечное множество $S\subset\mathbb{N}$. Для того чтобы доказать, что существует такое $C\in\mathfrak{Z}$, что $D\cap S=C\cap S$ нам достаточно доказать, что для любого M_j существует такое $C_j\in\mathfrak{Z}$, что $M_j\cap S=C_j\cap S$. Тогда $C=C_{i_1}\cup\ldots\cup C_{i_t}$. Рассмотрим c из определения M_j . Так как с каждым множеством $K\in\mathfrak{Z}$, \mathfrak{Z} содержит $\mathbb{N}\setminus K$, то для любого $b\in S\setminus M_j$ существует $A_b\in\mathfrak{Z}$ такое, что $c\in A_b$, $b\notin A_b$. Тогда $C_j=\bigcap_{b\in S\setminus M_j}A_b$ и $C_j\cap S=M_j\cap S$. Лемма доказана.

Лемма 3. Пусть B- подмножество \mathcal{P}_a , не являющееся подмножеством никакого $M_{pq}, P_2 \subset B$. Тогда для любых s и N таких, что $N \geqslant s$, существует автомат без входов $T_{sN} \in [B]$ такой, что его функция выхода

$$y(t) = \begin{cases} 0, & 1 \leqslant t \leqslant N, t \neq s, \\ 1, & t = s. \end{cases}$$

Доказательство. Пусть A — множество таких элементов $\alpha \in E$, для которых существует автомат с одним входом $T \in [B]$ такой, что $T(0^{\infty}) = \alpha$.

Каждому элементу E естественным образом сопоставим подмножество множества \mathbb{N} , а множеству A систему \widetilde{A} подмножеств \mathbb{N} . Другими словами все элементы сверхслова пронумерованы элементами множества \mathbb{N} . Если множество $C \subset \mathbb{N}$ соответствует сверхслову $\alpha \in E$, то $i \in C$ равносильно тому, что на i-ом месте в α стоит 1.

Так как в [B] есть конъюнкция, дизъюнкция, отрицание, то для любых $A_1, A_2 \in \widetilde{A}$ множества $A_1 \cap A_2, A_1 \cup A_2, \mathbb{N} \setminus A_1 \in \widetilde{A}$. Из леммы 2 получим $\mathbb{N} = M_1 \sqcup M_2 \sqcup M_3 \sqcup \ldots$ Найдём минимальное k_2 такое, что для каких-то l и $k_1 < k_2$ числа $k_1, k_2 \in M_l$. Тогда нетрудно убедиться, что $B \subset M_{k_1k_2}$. Если же такого k_2 не найдётся, то в каждом множестве M_i ровно 1 элемент. Для определённости можно считать, что $M_i = \{i\}$.

Рассмотрим произвольные s и $N \geqslant s$. Для $D = M_s = \{s\}$, $S = \{1, 2, \ldots, N\}$ из леммы 2 следует, что существует $C \in \widetilde{A}$ такое, что $C \cap S = \{s\}$. Множеству C соответствует сверхслово $\alpha \in A$, а этому сверхслову соответствует автомат T такой, что $T(0^{\infty}) = \alpha$. Но константа 0 принадлежит B, значит, в качестве $T_{sN} \in [B]$ можно взять T(0) и лемма доказана.

Следствие 1. Пусть B- подмножество \mathcal{P}_a , не являющееся подмножеством никакого $M_{pq},\ P_2\subset B$. Тогда для любого N и любого $S\subset\{1,2,\ldots,N\}$ существует автомат без входов $T\in[B]$ такой, что

 $y(t) = \begin{cases} 0, & 1 \leqslant t \leqslant N, t \notin S, \\ 1, & t \in S. \end{cases}$

Доказательство. Нетрудно убедиться, что искомый автомат $T = \bigvee_{t \in S} T_{tN}$.

Лемма 4. Пусть B- подмножество \mathcal{P}_a , не являющееся подмножеством никакого $M_{pq},\ S_p\ u\ M_{1\infty},\ P_2\subset B$. Тогда для любого $s\ cy$ -ществует $N>s\ u\ asmomam\ bes\ exodos\ S_{sN}\in[B]\ makoŭ,\ что$

$$y(t) = \begin{cases} 0, & 1 \leqslant t \leqslant s, \\ 1, & t > N. \end{cases}$$

Доказательство. Сначала докажем, что для любого t существует $N_t > t$ и автомат без входов $K_{tN_t} \in [B]$ с функцией выхода

$$y(j) = \begin{cases} 0, & j = t, \\ 1, & j > N_t. \end{cases}$$

Для любого t построим автомат $T \in B$ такой, что для каких-то $\vec{a}_1,\dots,\vec{a}_{t-1},\vec{a}\in E_2^{n(T)}$

$$f_{h(T)}(\vec{a}, \vec{a}, \dots, \vec{a}) \neq f_t(\vec{a}_1, \vec{a}_2, \dots, \vec{a}_{t-1}, \vec{a}).$$

Если t=1, то возьмём произвольный $T\notin M_{1\infty}$. Для какого-то $\vec{a}\in E_2^{n(T)}$

$$f_{h(T)}(\vec{a}, \vec{a}, \dots, \vec{a}) \neq f_1(\vec{a}).$$

Если t>1, то возьмём автомат $T\notin S_t$. Для каких-то $\vec{a}_1,\dots,\vec{a}_t,\vec{b}\in E_2^{n(T)}$.

$$f_t(\vec{a}_1, \vec{a}_2, \dots, \vec{a}_{t-2}, \vec{a}_{t-1}, \vec{a}_t) \neq f_t(\vec{a}_1, \vec{a}_2, \dots, \vec{a}_{t-2}, \vec{b}, \vec{a}_t).$$

А значит, либо левая часть, либо правая часть не равна $f_{h(T)}(\vec{a}_t,\vec{a}_t,\ldots,\vec{a}_t).$

Пусть n(T)=1. Из следствия 1 следует, что существует автомат без входов $R\in [B]$ такой, что $y(i)=a_i$ для любого $1\leqslant i\leqslant t-1$ и y(t)=a. Если в качестве выхода автомат R возвращает сверхслово вида $a_1a_2a_3\dots a_{t-1}a\gamma b^\infty$ и $b\neq a$, то в качестве автомата K_{tN_t} возьмём R или \overline{R} . Иначе, не трудно убедиться в том, что в качестве автомата K_{tN_t} можно взять T(R) или $\overline{T(R)}$. Аналогично, если n(T)>1, то по следствию 1 найдём n(T) автоматов $R_1,\dots,R_{n(T)}$ и в качестве K_{tN_t} будем брать или R_i , или $\overline{R_i}$ для какого-то i, или $T(R_1,R_2,\dots,R_{n(T)})$, или $\overline{T(R_1,R_2,\dots,R_{n(T)})}$. То есть мы доказали, что существует $K_{tN_t}\in [B]$. Но $S_{sN}=\bigwedge_{t\leqslant s}K_{tN_t}$, где $N=\max_{t\leqslant S}N_t$. Что и требовалось доказать.

Лемма 5. Пусть B- подмножество \mathcal{P}_a , не являющееся подмножеством никакого S_p и $M_{pq},\ P_2\subset B$. Тогда для любого $s\geqslant 2$ существует автомат с одним входом $U_s\in [B]$ такой, что y(s)=x(s-1).

Доказательство. Из условия леммы следует, что существует автомат $T \in B$ такой, что $T \notin S_s$. А значит, для этого автомата

$$f_s(\vec{a}_1, \vec{a}_2, \dots, \vec{a}_{s-2}, \vec{a}_{s-1}, \vec{a}_s) \neq f_s(\vec{a}_1, \vec{a}_2, \dots, \vec{a}_{s-2}, \vec{b}, \vec{a}_s)$$

для каких-то $\vec{a}_1,\dots,\vec{a}_p,\vec{b}\in E_2^{n(T)},\vec{b}\neq\vec{a}_{s-1}.$ Пусть n(T)=1. Из следствия 1 следует, что существует автомат без входов $R\in[B]$ такой, что $y(i)=a_i$ для любого $1\leqslant i\leqslant t.$ Рассмотрим автомат $Q(x)=T(R\oplus (T_{s-1,s}(x)\wedge x)),$ где \oplus — сложение по модулю $2,T_{s-1,s}$ — автомат из леммы 3. Тогда нетрудно убедиться, что либо автомат Q, либо автомат \overline{Q} искомый. Если n(T)>1, то по следствию 1 найдём n(T) автоматов $R_1,\dots,R_{n(T)},$ будем добавлять $T_{s-1,s}(x)\wedge x$ к R_i только для таких i, для которых $\vec{b}^{(i)}\neq\vec{a}_{s-1}^{(i)}.$ Подставив полученные автоматы в T, мы и получим искомый автомат Q или $\overline{Q}.$ Что и требовалось доказать.

Будем говорить, что $C \subset \mathcal{P}_a$ отличает α_1 от α_2 , если в C есть автомат T с одним входом высоты $\leq \min(|\alpha_1|, |\alpha_2|)$ такой, что $f_{h(T)}(inv(]_{h(T)}\alpha_1)) \neq f_{h(T)}(inv(]_{h(T)}\alpha_2)).$

Лемма 6. Пусть $B \subset \mathcal{P}_a, P_2 \subset B$ и в [B] нет автомата c одним входом W такого, что $f_{h(W)}(a_1, \ldots, a_{h(W)-1}, a_{h(W)}) = a_{h(W)-1}$ для

любых $a_1, \ldots, a_{h(W)} \in E_2$. Тогда существуют α и β из E, не отличимые множеством [B], такие, что $\alpha(1) = \beta(1)$ и $\alpha(2) \neq \beta(2)$.

Доказательство. Предположим, что это не так. Определим множества $D_r \subset (E_2{}^r)^2$. Для $\alpha, \beta \in E_2{}^r$ пара (α, β) принадлежит D_r тогда и только тогда, когда $\alpha(1) = \beta(1), \ \alpha(2) \neq \beta(2), \ \text{и } [B]$ не отличает α от β .

Теперь докажем, что D_r не пустое для любого r. Пусть $D_r=\varnothing$, тогда для любых $\alpha,\beta\in E_2{}^r$ таких, что $\alpha(1)=\beta(1),\ \alpha(2)\neq\beta(2),$ в [B] есть автомат $Q_{\alpha,\beta}$ с одним входом высоты $h\leqslant r$ отличающий α и β . Так как в [B] есть отрицание, то без ограничения общности можно считать, что $f_h(inv(]_h\alpha))=0,$ а $f_{h(T)}(inv(]_{h(T)}\beta))=1.$ Также определим $Q_{\alpha,\beta}$, если $\alpha(1)\neq\beta(1),\ \alpha(2)\neq\beta(2).$ В этом случае в качестве $Q_{\alpha,\beta}$ возьмём либо тождественный автомат, либо отрицание тождественного автомата, чтобы $f_1(\alpha(1))=0,$ а $f_1(\beta(1))=1.$

Рассмотрим автомат $W(x) = \bigwedge_{\alpha} \bigvee_{\beta} Q_{\alpha,\beta}(x)$, в котором конъюнкция берётся по всем $\alpha \in {E_2}^r$ таким, что $\alpha(2) = 0$, дизъюнкция по всем $\beta \in {E_2}^r$ таким, что $\beta(2) = 1$. Нетрудно убедиться, что W удовлетворяет условиям леммы, получили противоречие. Значит, D_r не пустое для любого r.

Для $(\alpha', \beta') \in D_{r-1}$, $(\alpha, \beta) \in D_r$ будем говорить, что $(\alpha', \beta') \prec (\alpha, \beta)$, если $\alpha' =]_{r-1}\alpha$ и $\beta' =]_{r-1}\beta$. Очевидно, что если $(\alpha, \beta) \in D_r$, то $(]_{r-1}\alpha,]_{r-1}\beta) \in D_{r-1}$ и $(]_{r-1}\alpha,]_{r-1}\beta) \prec (\alpha, \beta)$. Тогда из леммы Кёнига [5] следует, что существует бесконечная последовательность $(\alpha_1, \beta_1) \prec (\alpha_2, \beta_2) \prec \ldots$, где $(\alpha_i, \beta_i) \in D_i$ для любого i. Пусть $\alpha = \alpha_1(1)\alpha_2(2)\ldots\alpha_i(i)\ldots$, и $\beta = \beta_1(1)\beta_2(2)\ldots\beta_i(i)\ldots$ Покажем, что α не отличимо от β множеством [B]. Предположим, что их можно отличить автоматом $T \in [B]$ высоты r, но $(]_r\alpha,]_r\beta) \in D_r$, получили противоречие, а значит, лемма доказана.

Для $\alpha \in E$ обозначим $A_{\alpha,B}$ — множество сверхслов $\gamma \in E$ таких, что существует автомат $T \in [B]$ с одним входом такой, что $G_T(\alpha) = \gamma$. Тогда верна следующая лемма.

Лемма 7. Для любого $B \subset P_a$ и любого $\alpha \in E$ каждый автомат из B G-сохраняет $A_{\alpha,B}$.

Доказательство. Рассмотрим $\alpha_1,\alpha_2,\ldots,\alpha_n\in A_{\alpha,B}$ и любой автомат $T\in B$ с n входами, докажем, что $G_T(\alpha_1,\alpha_2,\ldots,\alpha_n)\in A_{\alpha,B}$. Из определения следует, что существуют автоматы с одним входом $R_1,R_2,\ldots,R_n\in [B]$ такие, что $\alpha_i=G_{R_i}(\alpha)$. Рассмотрим автомат $Q(\gamma)=T(R_1(\gamma),R_2(\gamma),\ldots,R_n(\gamma))$. Очевидно, что $Q\in [B]$, $G_Q(\alpha)=G_T(\alpha_1,\alpha_2,\ldots,\alpha_n)$, а значит, $G_T(\alpha_1,\alpha_2,\ldots,\alpha_n)\in A_{\alpha,B}$. Что и требовалось доказать.

Определение 5. Для h>1 говорим, что множество автоматов B обладает h-свойством, если $P_2\subset B,\ B\subset \mathcal{P}_a{}^h$ и B не является подмножеством L_1,L_2,L_3,L_4 и R_d^C для $d<(2h^2)^{4h}.$

Рассмотрим произвольное B, обладающее h-свойством, и произвольное $A\subset E$ такое, что B G-сохраняет A. Сопоставим каждому элементу E подмножество \mathbb{N} , а множеству A систему \widetilde{A} подмножеств \mathbb{N} . Другими словами, все элементы сверхслова пронумерованы элементами множества \mathbb{N} . Если множество $C\subset \mathbb{N}$ соответствует $\alpha\in E$, то $i\in C$ равносильно тому, что на i-ом месте в α стоит 1.

Так как в [B] есть конъюнкция, дизъюнкция, отрицание, то для любых $A_1, A_2 \in \widetilde{A}$ множества $A_1 \cap A_2, A_1 \cup A_2, \mathbb{N} \setminus A_1 \in \widetilde{A}$. Из леммы 2 получим $\mathbb{N} = M_1 \cup M_2 \cup M_3 \cup \ldots$ Другими словами, это означает, что мы разбили множество \mathbb{N} на классы эквивалентности, при этом если i эквивалентно j, а $\gamma \in A$, то в γ на i-ом и j-ом местах стоит одно и тоже. Будем говорить, что отображение $g: \mathbb{N} \to \mathbb{N}$ описывает A, если $g(k_1) = g(k_2)$ равносильно тому, что для любого $\alpha \in A$ выполняется $\alpha(k_1) = \alpha(k_2)$. Множество всех таких отображений обозначим $\mathbb{G}(A)$. Очевидно, что отображение, принимающее на любом элементе множества M_i значение i, принадлежит $\mathbb{G}(A)$. Чтобы задать произвольное такое отображение необходимо и достаточно задать его на множествах M_1, M_2, \ldots

Лемма 8. Пусть B обладает h-свойством u G-сохраняет $A \subset E$, $g \in \mathbb{G}(A)$. Для любого конечного $S \subset \mathbb{N}$ u любого отображения $\phi : \mathbb{N} \to E_2$ существует $\gamma \in A$ такое, что для любого $i \in S$ на i-ом месте в γ cmoum $\phi(g(i))$.

Доказательство. Рассмотрим систему \widetilde{A} подмножеств \mathbb{N} , соответствующую множеству A, и воспользуемся леммой 2. Пусть множество D является объединением тех и только тех M_i , для которых

 $M_i \cap S \neq \emptyset$ и $\phi(g(M_i)) = 1$. Тогда по лемме 2 найдётся такое $C \in \widetilde{A}$, что $C \cap S = D \cap S$. Множеству C можно сопоставить $\gamma \in A$. Нетрудно убедиться, что γ удовлетворяет условиям леммы.

Лемма 9. Пусть B обладает h-свойством u G-сохраняет $A \subset E$, $g \in \mathbb{G}(A)$. Для любого автомата $T \in [B]$ c n входами u любого отображения $\pi : \mathbb{N} \to E_2^n$ из равенства g(a) = g(b) следует равенство

$$f_{h(T)}(\pi(g(a+h(T)-1)), \dots, \pi(g(a))) =$$

$$= f_{h(T)}(\pi(g(b+h(T)-1)), \dots, \pi(g(b))). \quad (1)$$

Доказательство. Отображение π можно представить в виде $\pi(a) = (\phi_1(a), \phi_2(a), \dots, \phi_n(a))$. Для $S = \{a, a+1, \dots, a+h-1, b, b+1, \dots, b+h-1\}$ из леммы 8 найдём $\alpha_j \in A$, где $1 \le j \le n$, такие, что для $i \in S$ на i-ом месте в α_j стоит $\phi_j(g(i))$.

Пусть $\gamma = G_T(\alpha_1, \alpha_2, \dots, \alpha_n)$, тогда так как B G-сохраняет A, то $\gamma \in A$. Так как g(a) = g(b), то в γ на a-ом и b-ом местах стоит одно и тоже. Если записать это равенство в явном виде, то мы и получим равенство 1.

Рассмотрим произвольное $A \subset E$ и $g \in \mathbb{G}(A)$. Определим функцию $u_A : \mathbb{N} \to \mathbb{N}$ следующим образом. $u_A(k)$ — минимальное натуральное число l такое, что g(k+l) = g(k). Если такого числа не существует, то считаем, что $u_A(k) = \infty$. Нетрудно убедиться, что функция u_A не зависит от выбора функции g, а зависит только от множества A. Далее мы докажем некоторые свойства функции u_A .

Лемма 10. Пусть В обладает h-свойством и G-сохраняет $A \subset E$, $g \in \mathbb{G}(A)$. Если g(a) = g(b), $g(a) \neq g(a+1)$ и $u_A(a+1) \geqslant h$, то для какого-то $l \in \{b+1, b+2, \ldots, b+h-1\}$ выполняется g(l) = g(a+1).

Доказательство. Предположим, что это не так, докажем, что в этом случае $B \subset L_1$. Рассмотрим произвольный автомат $T \in B$ с n входами и произвольные вектора $\vec{a}, \vec{b} \in E_2^n$.

Пусть отображение $\pi: \mathbb{N} \to E_2{}^n$ такое, что $\pi(i) = \vec{b}$, если i = g(a+1) и $\pi(i) = \vec{a}$ иначе. Так как g(a) = g(b), то мы можем записать равенство 1. Учитывая, что $h(T) \leqslant h$, $g(a) \neq g(a+1)$, $g(l) \neq g(a+1)$

для $l \in \{b+1, b+2, \dots b+h\}$, нетрудно убедиться, что равенство будет иметь вид:

$$f_{h(T)}(\vec{a}, \vec{a}, \dots, \vec{a}, \vec{a}, \vec{a}) = f_{h(T)}(\vec{a}, \vec{a}, \dots, \vec{a}, \vec{b}, \vec{a}).$$

Следовательно, $B \subset L_1$, получили противоречие. Лемма доказана.

Лемма 11. Пусть B обладает h-свойством u G-сохраняет $A \subset E$. Тогда $u_A(n+1) \leqslant u_A(n) + h - 1$ для любого n.

Доказательство. Рассмотрим произвольное $g \in \mathbb{G}(A)$. Если $u_A(n) = \infty$ или $u_A(n+1) < h$, то неравенство очевидно. Пусть $u_A(n) \neq 1, u_A(n)$ конечно и $u_A(n+1) \geqslant h$. Применим лемму 10 к $g(n) = g(n+u_A(n))$. Получим, что для какого-то $l \in \{n+u_A(n)+1, n+u_A(n)+2, \ldots, n+u_A(n)+h-1\}$ выполняется g(l)=g(n+1). Тогда $u_A(n+1)\leqslant (l-(n+1))\leqslant n+u_A(n)+h-1-(n+1)=u_A(n)+h-2< u_A(n)+h-1$.

Пусть $u_A(n) = 1$, $u_A(n+1) \geqslant h$, докажем, что в этом случае $[B] \subset L_2$. Рассмотрим произвольный автомат $T \in B$ с n входами и произвольные вектора $\vec{a}, \vec{b} \in E_2^n$.

Пусть отображение $\pi: \mathbb{N} \to E_2{}^n$ такое, что $\pi(i) = \vec{b}$, если i = g(n) и $\pi(i) = \vec{a}$ иначе. Так как g(n) = g(n+1), то мы можем записать равенство 1. Учитывая, что $h(T) \leqslant h, \ g(l) \neq g(n)$ для $l \in \{a+2, a+3, \ldots a+h\}$, нетрудно убедиться, что равенство будет иметь вид:

$$f_{h(T)}(\vec{a}, \vec{a}, \dots, \vec{a}, \vec{a}, \vec{b}) = f_{h(T)}(\vec{a}, \vec{a}, \dots, \vec{a}, \vec{b}, \vec{b}).$$

Следовательно, $[B] \subset L_2$, получили противоречие. Лемма доказана.

Следствие 2. Если $u_A(n) \neq \infty$, то $u_A(m) \neq \infty$ для любого $m \geqslant n$. Если $u_A(n) = \infty$, то $u_A(m) = \infty$ для любого $m \leqslant n$.

Пемма 12. Пусть B обладает h-свойством u G-сохраняет $A \subset E$. Пусть $u_A(n) \neq \infty$, $u_A(n+u_A(n)) \neq 1$, $u_A(n) \geqslant h$, $u_A(n+u_A(n)+1) \geqslant h$ тогда существует l < h такое, что $u_A(n+l) \leqslant u_A(n)$, причём равенство допускается только при l = 1.

Доказательство. Рассмотрим произвольное $g \in \mathbb{G}(A)$. Так как $u_A(n+u_A(n)+1) \geqslant h \ u_A(n+u_A(n)) \neq 1$, то можно применить лемму 10

к $g(n+u_A(n))=g(n)$. Получим, что для какого-то $l_0\in\{n+1,n+2,\dots n+h-1\}$ имеет место $g(l_0)=g(n+u_A(n)+1)$. А отсюда следует, что $u_A(l_0)\leqslant (n+u_A(n)+1-(l_0))\leqslant n+u_A(n)+1-(n+1)=u_A(n)$. При этом равенство возможно только, если $l_0=n+1$. Значит, для $l=l_0-n< h$ выполняется $u_A(n+l)=u_A(l_0)\leqslant u_A(n)$. Лемма доказана

Лемма 13. Пусть В обладает h-свойством и G-сохраняет $A \subset E$, $g \in \mathbb{G}(A)$. Если $u_A(i) = s$ для любого $i \geqslant k$, то для любых f < q, таких, что g(f) = g(q), q - f делится на s.

Доказательство. Утверждение очевидно при s=1, докажем его при s>1. Предположим, что это не так. Можно считать, что f< k, иначе утверждение очевидно. Рассмотрим максимальное $f_0< k$ такое, что для некоторого $q_0>f_0$ выполняется $g(f_0)=g(q_0),\,q_0-f_0$ не делится на s.

Пусть s=2, докажем, что в этом случае $[B]\subset L_3$. Рассмотрим произвольный автомат $T\in B$ с n входами и произвольные вектора $\vec{a}, \vec{b}\in E_2^n$.

Пусть отображение $\pi: \mathbb{N} \to E_2{}^n$ такое, что $\pi(i) = \vec{b}$, если для какого-то j выполняется $f_0 < j < k+2, i=g(j), j-q_0$ делится на 2, и $\pi(i) = \vec{a}$ иначе. Так как $g(f_0) = g(q_0)$, то мы можем записать равенство 1. Нетрудно убедиться, что равенство будет иметь вид:

$$f_{h(T)}(\ldots, \vec{a}, \vec{b}, \vec{a}, \vec{b}, \vec{b}) = f_{h(T)}(\ldots, \vec{b}, \vec{a}, \vec{b}, \vec{a}, \vec{b}).$$

Следовательно, $[B] \subset L_3$, получили противоречие.

Теперь пусть s>2, рассмотрим множество $D\subset E_2{}^s$, состоящее из всех таких элементов ξ , у которых $\xi((f_0-k)\pmod s)+1)=\xi((q_0-k)\pmod s)+1)$. Нетрудно убедиться, что s и D определяют замкнутый класс R_s^D .

Покажем, что для любого автомата с n входами $T \in B$ и для любых $\alpha_1, \alpha_2, \ldots, \alpha_n \in D$ выполняется $T(\alpha_1^{\infty}, \alpha_2^{\infty}, \ldots, \alpha_n^{\infty}) = \eta^{\infty}$, гле $n \in D$.

Из леммы 8 следует, что можно подобрать такие $\gamma_1, \gamma_2, \ldots, \gamma_n \in A$, что $\gamma_j(i) = \alpha_j((i-k) \pmod s) + 1)$ при всех $i \geqslant f_0, \ 1 \leqslant j \leqslant n$. Пусть $G_T(\gamma_1, \gamma_2, \ldots, \gamma_n) = \zeta$. B G-сохраняет A, поэтому $\zeta \in A$. Нетрудно

получить, что $\zeta(k+i)=\eta(i+1)$ для $0\leqslant i< s$. Из соображений периодичности $\zeta(f_0+i)=\zeta(f_0+j)$ для $i=j\pmod s$ и $f_0\leqslant i< j$. Но $g(f_0)=g(q_0)$, тогда $\zeta(f_0)=\zeta(q_0)$. Значит, $\eta((f_0-k)\pmod s)+1)=\eta((q_0-k)\pmod s)+1)$ и $\eta\in D$. Мы доказали, что $B\subset R^D_s$, но по условию B обладает h-свойством. Получили противоречие, то есть мы показали, что для любых f< q таких, что g(f)=g(q), число q-f делится на s.

Лемма 14. Пусть В обладает h-свойством и G-сохраняет $A \subset E$. Если $u_A(n) \leq 2h^2$ для $n \geqslant m$, то существуют такие $k \geqslant m$ и s, что $u_A(i) = s$ для $i = k, k+1, \ldots, k+4h-1$.

Доказательство. Рассмотрим произвольное $g \in \mathbb{G}(A)$. Покажем, что на множестве $\{m,m+1,m+2,\ldots\}$ функция g принимает не более $2h^2$ различных значений. Предположим, что это не верно, тогда рассмотрим такое $m_1 > m$, что на множестве $\{m,m+1,\ldots,m_1-1\}$ функция g принимает более $2h^2$ различных значений. Так как каждое значение обязательно повторяется, причём не более, чем через $2h^2$, то на множестве $\{g(m_1+1),\ldots,g(m_1+6h^4)\}$ каждое значение встречается по крайней мере $\left[\frac{6h^4}{2h^2}\right]-1=3h^2-1$ раз. А по предположению всего значений $\geqslant 2h^2+1$, тогда получаем неравенство $(3h^2-1)*(2h^2+1)\leqslant 6h^4$. Получили противоречие. Значит, на множестве $\{m,m+1,m+2\ldots\}$ функция g принимает не более $2h^2$ различных значений. Обозначим множество всех таких значений Z.

Для произвольного i рассмотрим слово $g(i)g(i+1)\dots g(i+4h-1)\in Z^{4h}$. Так как множество Z^{4h} конечно(в нём не более $(2h^2)^{4h}$ различных элементов), то найдутся такие числа $a,b\geqslant m$, что $0< b-a\leqslant (2h^2)^{4h}$ и g(a+i)=g(b+i) для $i=0,1,\dots,4h-1$. Пусть при этом b — минимальное число большее a, удовлетворяющее этому условию.

Пусть b-a=d, тогда $d\leqslant (2h^2)^{4h}$. C — множество слов $\eta\in E_2{}^d$ таких, что для какого-то $\gamma\in A$ выполняется $\gamma(a+i)=\eta(i+1)$ при всех $0\leqslant i< d$.

Так как $P_2 \subset B$, то для любых $\eta_1, \eta_2 \in C$ слова $\overline{\eta_1}, \eta_1 \vee \eta_2, \eta_1 \wedge \eta_2 \in C$. Покажем, что для любого автомата с n входами $T \in B$ и для любых $\alpha_1, \alpha_2, \ldots, \alpha_n \in C$ выполняется $T(\alpha_1^{\infty}, \alpha_2^{\infty}, \ldots, \alpha_n^{\infty}) = \eta^{\infty}$, где $\eta \in$

C. По определению существуют $\gamma_1, \gamma_2, \ldots, \gamma_n \in A$, такие, что $\gamma_j(a+i) = \alpha_j(i+1)$ при всех $0 \leqslant i < d, 1 \leqslant j \leqslant n$. Пусть $G_T(\gamma_1, \gamma_2, \ldots, \gamma_n) = \zeta$. Так как B G-сохраняет A, то $\zeta \in A$. Все автоматы в B имеют высоту \leqslant h, поэтому из равенства g(a+i) = g(b+i) для $0 \leqslant i < 4h$ следует, что $\zeta(a+i) = \eta(i+1)$ для $0 \leqslant i < d$. А значит, $\eta \in C$.

d и C не определяют замкнутый класс, так как иначе $B \subset R_d^C$, а B по условию обладает h-свойством. Посмотрим, в каком случае d и C не определяют замкнутый класс. Это возможно, только если для любого l множество C вместе со словом с наименьшим периодом l содержит все слова периода l. Рассмотрим наибольшее l_1 такое, что в C есть слово с наименьшим периодом l_1 . Предположим, что $l_1 < d$. Тогда в C должно быть слово с наименьшим периодом l_2 , не делящим l_1 , иначе все слова в C имели бы период l_1 и $g(a+i)=g(a+l_1+i)$ для $i=0,1,\ldots,4h-1$, а b — минимальное число, обладающее этим свойством. Отсюда следует, что в C есть все слова периода l_1 и l_2 . Например, $\zeta_1 = (\underbrace{100\ldots 00}_{l_1})^{d/l_1}$ и $\zeta_2 = (\underbrace{100\ldots 00}_{l_2})^{d/l_2}$ принадлежат C. Но

наименьший период слова $\zeta_1 \wedge \zeta_2 \in C$ больше l_1 , что противоречит выбору l_1 . Значит, в C есть слово с наименьшим периодом d и $C = E_2{}^d$. Тогда функция g ни на каких двух элементах $\{a, a+1, a+2, \ldots, b-1\}$ не принимает одинакового значения. Отсюда сразу делаем вывод, что $u_A(n) = d$ для $n = a, a+1, \ldots, a+4h-1$.

Лемма 15. Пусть B обладает h-свойством u G-сохраняет $A \subset E$. Тогда функция u_A удовлетворяет одному из следующих пунктов:

- 1) $u_A(n) = \infty$ для любого n.
- 2) Существует $m\geqslant 1$ такое, что $u_A(n)=\infty$ для n< m $u_A(n)=s$ для $n\geqslant m$.

Доказательство. Рассмотрим произвольное $g \in \mathbb{G}(A)$. Пусть s- минимум $u_A(n)$. Если $s=\infty$, то это первый случай. Иначе, если s>h, рассмотрим минимальное n_0 такое, что $u_A(n_0)=s$. Так как $u_A(n_0+u_A(n_0))\geqslant s>h>1$, то из леммы 12 следует, что для какогото $1\leqslant l< h$ выполняется $u_A(n_0+l)\leqslant u_A(n_0)=s$. Но s- минимум $u_A(n)$, значит, $u_A(n_0+l)=u_A(n_0)$ и l=1. Аналогично применим лемму 12 к n_0+1 , и так далее. Получим, что $u_A(n)=s$ для любого $n\geqslant s$

 n_0 . Если $n_0=1$, то это 2-ой пункт. Пусть $n_0>1$, тогда $u_A(n_0-1)>s$. Предположим, что $u_A(n_0-1)\neq\infty$. Пусть $n_1=n_0-1$. Так как $n_1+u_A(n_1)-s>n_0$, то $u_A(n_1+u_A(n_1)-s)=s$. Тогда $g(n_1+u_A(n_1)-s)=g(n_1+u_A(n_1))=g(n_1)$, а значит, n_1 и $n_1+u_A(n_1)-s$ эквивалентны. Но по определению u_A , число $n_1+u_A(n_1)$ — минимальное число большее n_1 такое, что $g(n_1+u_A(n_1))=g(n_1)$. Получили противоречие, значит, $u_A(n_0-1)=\infty$. По следствию 2 $u_A(n)=\infty$ для любого $n< n_0$, значит, функция u_A относится ко 2-ому пункту.

Теперь пусть $s\leqslant h$, а n_0 — минимальное число такое, что $u_A(n_0)\leqslant h$. Будем строить последовательность n_0,n_1,n_2,\ldots так, чтобы $u_A(n_i)\leqslant 2h-1$, а также $n_i-n_{i-1}\leqslant 2h$. Покажем, что её можно построить. Пусть мы уже построили n_0,\ldots,n_r . Если $u_A(n_r)\leqslant h$, то из леммы 11 следует, что в качестве n_{r+1} можно взять n_r+1 . Если $u_A(n_r)+1$ <2h, то в качестве n_{r+1} можно взять $n_r+u_A(n_r)+1$. Если $u_A(n_r+u_A(n_r))=1$, то в качестве n_{r+1} можно взять $n_r+u_A(n_r)$. Если $u_A(n_r)>h$ и $u_A(n_r+u_A(n_r)+1)\geqslant 2h>h$, то можно воспользоваться леммой 12 и в качестве n_{r+1} взять n_r+l . Мы получим, что $u(n_{r+1})=u_A(n_r+l)\leqslant u_A(n_r)<2h$. Таким образом, последовательность построена. Рассмотрим произвольное $n>n_0$. Существует n_i такое, что $n-n_i<2h$, и из леммы 11 следует, что $u_A(n_i+j+1)\leqslant u_A(n_i+j)+h-1$. А значит, $u_A(n)\leqslant u_A(n_i)+(h-1)*(n-n_i)\leqslant 2h^2$. То есть мы доказали, что для любого $n\geqslant n_0$ выполняется $u_A(n)\leqslant 2h^2$.

Теперь покажем, что для какого-то m_1 выполняется $u_A(n)=s_0$ для любого $n>m_1$. Предположим, что это не так, тогда построим три последовательности $a_1,a_2,\ldots,b_1,b_2,\ldots$ и s_1,s_2,\ldots По лемме 14 существует минимальное $a_1\geqslant n_0$ такое, что существуют b_1 и s_1 , для которых $b_1\geqslant a_1+4h,\ u_A(a_1-1)\neq s_1,\ u_A(b_1)\neq s_1,\ u_A(j)=s_1$ для $j=a_1,a_1+1,\ldots,b_1-1$. Аналогично рассмотрим минимальное $a_2>a_1$ такое, что существуют b_2 и s_2 для которых $b_2\geqslant a_2+4h,\ u_A(a_2-1)\neq s_2,\ u_A(b_2)\neq s_2,\ u_A(j)=s_2$ для $j=a_2,a_2+1,\ldots,b_2-1$. И так далее, построим три последовательности. Из леммы 14 следует, что такие последовательности существуют, причём они бесконечны. Для любого i рассмотрим наибольшее n_j такое, что $a_i\leqslant n_j< b_i$. Оно очевидно найдется. Но $u_A(n_j)\leqslant 2h-1$, значит $s_i\leqslant 2h-1$ для любого i.

Рассмотрим произвольный i-ый кусок. Для любого $\alpha \in A$ его элементы от a_i -ого до (b_i+s_i-1) -ого повторяются с периодом s_i . Из каждого сверхслова из A удалим s_i элементов от a_i -ого до $a_i + s_i - 1$ -ого. Получим множество $A' \subset E$. Так как все автоматы из B имеют высоту $\leq h$, а кусок имеет длину большую $4h + s_i - 1 > s_i + h$, то B G-сохраняет A'. Посмотрим, чем отличается функция $u_{A'}$ от функции u_A . Для $t \geqslant a_i$ очевидно, что $u_{A'}(t) = u_A(t+s_i)$. Для $t < a_i$ понятно, что $u_A(t)$ может отличаться от $u_{A'}(t)$, только если $u_A(t) > 4h$. При этом $u_{A'}(t) > 4h$, а также $u_{A'}(a_i - 1) \neq s_i$. Покажем, что после удаления этого куска не может появиться новый периодический кусок. Предположим, что это не так и кусок от $a_0 \geqslant n_0$ до b_0 с периодом s_0 появился (возможно $b_0 = \infty$ и кусок бесконечный). $s_0 \leqslant 2h - 1$, так как всё, доказанное нами для A, верно и для A'. Если $a_0 \geqslant a_i$, то этому куску соответствует, кусок от $a_0 + s_i$ до $b_0 + s_i$ в A. Для $a_0 \leqslant l < b_0$ число $u_{A'}(l) = s_0 \leqslant 2h - 1 \leqslant 4h$, поэтому если $b_0 \leqslant a_i$, то этому куску соответствует, кусок от a_0 до b_0 в A. Иначе $a_0 < a_i < b_0$, но $u(A')(a_i-1) \neq s_i$, а $u(A')(a_i) = u(A)(a_i+s_i) = s_i$. Получили противоречие, следовательно новых кусков появиться не могло. Теперь удалим из каждого куска s_i элементов ровно столько раз, чтобы длина куска была меньше, чем $4h+s_i$, но больше, чем 4h-1. В оставшемся от А множестве уже не будет периодических кусков длины больше, чем $4h + s_i - 1$, так как при удалении элементов новые периодические куски появиться не могли. Но это невозможно, так как оставшееся от A множество не удовлетворяет лемме 14. Получили противоречие. То есть мы доказали, что для какого-то m_1 выполняется $u_A(n) = s_0$ для любого $n > m_1$.

Рассмотрим минимальное m_2 такое, что $u_A(n)=s_0$ для любого $n\geqslant m_2$. Если $m_2=1$, то это 2-ой пункт. Пусть $m_2>1$, покажем, что $u_A(m_2-1)=\infty$. Предположим, что это не так. Число $u_A(m_2-1)$ не равняется s_0 , но по лемме 13 делится на s_0 . Значит, $u_A(m_2-1)>s_0$. Но $u_A(n)=s_0$ для любого $n\geqslant m_2$. Значит, $g(m_2-1+u_A(m_2-1)-s_0)=g(m_2-1+u_A(m_2-1))=g(m_2-1)$. Но по определению $m_2-1+u_A(m_2-1)$ — минимальное число, для которого $g(m_2-1+u_A(m_2-1))=g(m_2-1)$. Получили противоречие, значит, $u_A(m_2-1)=\infty$. По следствию $u_A(n)=\infty$ для любого $u_A(n)=\infty$ для любого $u_A(n)=\infty$ значит, функция $u_A(n)=\infty$ относится ко 2-ому пункту. Лемма доказана.

Теперь перейдём к доказательству основной леммы.

Лемма 16. Пусть $P_2 \subset B$, $B \subset \mathcal{P}_a{}^h$, u B не является подмножеством L_1, L_2, L_3, L_4 u R_d^C для $d < (2h^2)^{4h}$. Тогда существует автомат с одним входом $W \in [B]$ такой, что $f_{h(W)}(a_1, \ldots, a_{h(W)-1}, a_{h(W)}) = a_{h(W)-1}$ для любых $a_1, \ldots, a_{h(W)} \in E_2$.

Доказательство. Предположим, что это не так, тогда из леммы 6 найдём α и β из E, не отличимые множеством [B], такие, что $\alpha(1) = \beta(1)$ и $\alpha(2) \neq \beta(2)$.

Рассмотрим $A \subset E^2$ — множество пар $(\gamma, \delta) \in E^2$, для каждой из которых существует автомат $T \in [B]$ с одним входом такой, что $G_T(\alpha) = \gamma$ и $G_T(\beta) = \delta$. Будем говорить, что B G-сохраняет $A \subset E^2$, если для любого автомата $T \in B$ с n входами и любых $(\gamma_1, \delta_1), (\gamma_2, \delta_2), \ldots, (\gamma_n, \delta_n) \in A$ выполняется $(G_T(\gamma_1, \gamma_2, \ldots, \gamma_n), G_T(\delta_1, \delta_2, \ldots, \delta_n)) \in A$. Пусть A_1 — множество таких γ , что для какого-то δ выполняется $(\gamma, \delta) \in A$, аналогично, A_2 — множество таких δ , что для какого-то γ выполняется $(\gamma, \delta) \in A$. Полностью аналогично лемме 7 легко доказать, что B G-сохраняет A.

Пусть $\mathbb{N}_1 = \{1,2,3,\ldots\}$ и $\mathbb{N}_2 = \{1',2',3',\ldots\}$ — два непересекающихся множества, изоморфных множеству натуральных чисел. Рассмотрим их объединение $\mathbb{N} = \mathbb{N}_1 \cup \mathbb{N}_2$, то есть $\mathbb{N} = \{1,2,3,\ldots,1',2',3',\ldots\}$. На множестве \mathbb{N} введем отношение частичного порядка. На множествах \mathbb{N}_1 и \mathbb{N}_2 порядок естественный, а между собой элементы этих множеств не сравнимы. Каждому элементу E^2 можно естественным образом сопоставить подмножество \mathbb{N} , а множеству A систему A подмножеств \mathbb{N} . Другими словами все элементы (γ, δ) пронумерованы элементами множества \mathbb{N} . И множеству $C \subset \mathbb{N}$ соответствует (γ, δ) , если для любого $i \in \mathbb{N}$ число $i \in C$ тогда и только тогда, когда на i-ом месте в (γ, δ) стоит 1.

Так как в [B] есть конъюнкция, дизъюнкция, отрицание, то для любых $C_1, C_2 \in \widetilde{A}$ множества $C_1 \cap C_2, C_1 \cup C_2, \widetilde{\mathbb{N}} \setminus C_1 \in \widetilde{A}$. Но $\mathbb{N}_1 \cup \mathbb{N}_2$ изоморфно \mathbb{N} , значит, по лемме $2\ \widetilde{\mathbb{N}} = M_1 \sqcup M_2 \sqcup M_3 \sqcup \ldots$ Другими словами это означает, что мы разбили множество $\widetilde{\mathbb{N}}$ на классы эквивалентности, при этом если i эквивалентно j, а $(\gamma, \delta) \in A$, то в (γ, δ) на i-ом и j-ом местах стоит одно и тоже. Рассмотрим отображение $\widetilde{g}:\widetilde{\mathbb{N}} \to \mathbb{N}$ такое, что $\widetilde{g}(k) = l$, если $k \in M_l$. Нетрудно убедиться, что

если ограничить функцию \widetilde{g} на множество $\mathbb{N}_1(\mathbb{N}_2)$, то мы получим функцию $g_1 \in \mathbb{G}(A_1)$ $(g_2 \in \mathbb{G}(A_2))$.

Так как α и β не отличимы множеством B, то для любого $(\gamma, \delta) \in A$ выполняется $\gamma(1) = \delta(1)$. А значит, $\widetilde{g}(1) = \widetilde{g}(1')$. Но $\widetilde{g}(2) \neq \widetilde{g}(2')$, так как $\alpha(2) \neq \beta(2)$.

Аналогично лемме 9, легко доказать, что для любого автомата $T \in [B]$ с n входами и любого отображения $\pi: \widetilde{\mathbb{N}} \to E_2{}^n$ из равенства $\widetilde{g}(a) = \widetilde{g}(b)$ следует равенство

$$f_{h(T)}(\pi(\widetilde{g}(a+h(T)-1)), \dots, \pi(\widetilde{g}(a))) = f_{h(T)}(\pi(\widetilde{g}(b+h(T)-1)), \dots, \pi(\widetilde{g}(b))).$$
(2)

Определим функцию $\widetilde{u}: \widetilde{\mathbb{N}} \to \mathbb{N}$ следующим образом. $\widetilde{u}(k)$ — минимальное натуральное число l такое, что $\widetilde{g}(k+l) = \widetilde{g}(k)$. Если такого числа не существует, то считаем, что $\widetilde{u}(k) = \infty$. Нетрудно убедиться, что если ограничить функцию \widetilde{u} на множество $\mathbb{N}_1(\mathbb{N}_2)$ то мы получим функцию $u_{A_1}(u_{A_2})$.

Без изменений останется лемма 10: если $\widetilde{g}(a) = \widetilde{g}(b)$, $\widetilde{g}(a) \neq \widetilde{g}(a+1)$ и $\widetilde{u}(a+1) \geqslant h$, то для какого-то $l \in \{b+1, b+2, \dots b+h-1\}$ выполняется $\widetilde{g}(l) = \widetilde{g}(a+1)$.

Воспользуемся леммой 15 для u_{A_1} и u_{A_2} , и объеденим результаты. Получим, что возможны следующие случаи:

- $1)\ u_{A_1}(n_1) = \infty$ для любого $n_1 \in \mathbb{N}_1$ и $u_{A_2}(n_2) = \infty$ для любого $n_2 \in \mathbb{N}_2$.
- 2) $u_{A_1}(n_1)=\infty$ для любого $n_1\in\mathbb{N}_1$. Существуют m_2 и s такие, что $u_{A_2}(n_2)=\infty$ для $n_2< m_2$ и $u_{A_2}(n_2)=s$ для $n_2\geqslant m_2,$
- 3) $u_{A_2}(n_2)=\infty$ для любого $n_2\in\mathbb{N}.$ Существует m_1 и s такие, что $u_{A_1}(n_1)=\infty$ для $n_1< m_1$ и $u_{A_1}(n_1)=s$ для $n_1\geqslant m_1,$
- 4) Существуют m_1, m_2, s_1 и s_2 такие, что $u_{A_1}(n_1) = \infty$ для $n_1 < m_1$ и $u_{A_1}(n_1) = s_1$ для $n_1 \geqslant m_1, \ u_{A_2}(n_2) = \infty$ для $n_2 < m_2$ и $u_{A_2}(n_2) = s_2$ для $n_2 \geqslant m_2$,

Разберём эти случаи.

- 1) $\widetilde{g}(1') = \widetilde{g}(1)$, поэтому из леммы 10 следует, что для какого-то $l_{2'} > l_{1'} = 1$ выполняется $\widetilde{g}(2') = \widetilde{g}(l_{2'})$. Снова применим лемму 10 к $\widetilde{g}(2') = \widetilde{g}(l_{2'})$, получим, что для какого-то $l_{3'} > l_{2'}$ выполняется $\widetilde{g}(l_{3'}) = \widetilde{g}(3')$. И так далее получим, что для любого $n \in \mathbb{N}_2$ существует $l_n \in \mathbb{N}_1$ такое, что $\widetilde{g}(l_n) = \widetilde{g}(n)$. Теперь применим лемму 10 к $\widetilde{g}(1) = \widetilde{g}(1')$, Получим, что для какого-то $t \in \mathbb{N}_2$ выполняется $\widetilde{g}(t) = \widetilde{g}(2)$. Но тогда $\widetilde{g}(l_t) = \widetilde{g}(2)$ и $\widetilde{u}(2) \neq \infty$, противоречие, значит, первый случай разобран.
- 2)-3) Второй и третий случаи эквивалентны, поэтому рассмотрим только второй. Рассмотрим наибольшее $t \in \mathbb{N}_1$ такое, что для какого-то $t' \in \mathbb{N}_2$ выполняется $\widetilde{g}(t) = \widetilde{g}(t')$. Очевидно такое найдётся, так как на \mathbb{N}_1 функция \widetilde{g} принимает бесконечное количество значений, а на \mathbb{N}_2 конечное. Применим лемму 10 к $\widetilde{g}(t) = \widetilde{g}(t')$. Тогда найдётся l > t' такое, что $\widetilde{g}(l) = \widetilde{g}(t+1)$. Но мы выбрали максимальное t, противоречие, значит, второй и третий случай разобраны.
 - 4) Пусть $F_1=\{g_1(m_1),g_1(m_1+1),\ldots,g_1(m_1+s_1-1)\}$ и $F_2=\{g_2(m_2),g_2(m_2+1),\ldots,g_2(m_2+s_2-1)\}$. Покажем, что возможны 3 случая:
 - a) $F_1 \cap F_2 = \emptyset$.
 - б) Существуют $t_1\geqslant m_1$ и $t_2\geqslant m_2$ такие, что $g_1(t_1)=g_2(t_2),$ $g_1(t_1+1)\neq g_2(t_2+1).$
 - в) Существуют $t_1 \in \mathbb{N}_1$ и $t_2 \in \mathbb{N}_2$ такие, что $g_1(t_1+i) = g_2(t_2+i)$ для $i=0,1,2,3,\ldots$

Пусть множества F_1 и F_2 пересекаются, рассмотрим произвольные $t_1 \geqslant m_1$ и $t_2 \geqslant m_2$ такие, что $g_1(t_1) = g_2(t_2)$. Рассмотрим минимальное $i \in \mathbb{N}$ такое, что $g_1(t_1+i) \neq g_2(t_2+i)$. Если оно найдётся, то это случай б), иначе случай в). Осталось рассмотреть случаи а)—в).

а) Введём на множестве пар отношение частичного порядка. Будем говорить, что $(a,b) \leqslant (c,d)$, если $a \leqslant b$ и $c \leqslant d$. Рассмотрим любую максимальную пару (t_1,t_2) такую что $g_1(t_1)=g_2(t_2)$. Очевидно, что она найдётся. При этом или $t_1 < m_1$, или $t_2 < m_2$. Для определённости будем считать, что $t_1 < m_1$. Пусть отображение $\pi: \widetilde{\mathbb{N}} \to E_2^n$ такое, что $\pi(i)=\vec{b},$ если $i=\widetilde{g}(j)$ для какого-то $j>t_1$ и $\pi(i)=\vec{a}$ иначе. Так как $g_1(t_1)=g_2(t_2),$ то для произвольного автомата $T\in B$ мы можем записать равенство 2. Учитывая, что пара (t_1,t_2) максимальная, нетрудно убедиться, что равенство будет иметь вид:

$$f_{h(T)}(\vec{b}, \vec{b}, \dots, \vec{b}, \vec{b}, \vec{a}) = f_{h(T)}(\vec{a}, \vec{a}, \dots, \vec{a}, \vec{a}, \vec{a}).$$

А значит, $[B] \subset L_4$, получили противоречие, следовательно, случай а) полностью разобран.

б) Для определённости будем считать, что $s_1 \leqslant s_2$. Пусть A'- множество пар (γ, δ) таких, что для каких-то $\eta_1 \in E_2^{t_1}$ и $\eta_2 \in E_2^{t_2}$ выполняется $(\eta_1 \gamma, \eta_2 \delta) \in A$ и $\gamma \in \{0^\infty, 1^\infty\}$. Так как пары такого вида переходят в пары такого вида, то B G-сохраняет A'. Аналогично тому, как мы строили A_1 и A_2 построим $A'_1 \subset E$ и $A'_2 \subset E$. Очевидно, что B G-сохраняет A'_2 и к нему можно применить лемму 15.

Если A_2' имеет период $s_2 > 1$, то $|F_1 \cap F_2| = 1$. И A' состоит из всех пар $(a^{\infty}, \delta^{\infty})$ таких, что $\delta \in E_2{}^{s_2}$, $\delta(1) = a$. Рассмотрим замкнутый класс $R_{s_2}^C$, где C состоит из всех слов вида $aa\gamma$. Покажем, что $B \subset R_{s_2}^C$. Рассмотрим произвольный автомат $T \in B$ с n входами и произвольные $a_1, a_2, \ldots, a_n \in E_2, \alpha_1, \alpha_2, \ldots, \alpha_n \in E_2^{s_2-2}$ и докажем, что $G_T((a_1a_1\alpha_1)^{\infty}, (a_2a_2\alpha_2)^{\infty}, \ldots, (a_na_n\alpha_n)^{\infty}) = (cc\delta)^{\infty}$ для каких-то $c \in E_2$ и $\delta \in E_2^{s_2-2}$. Пусть

$$G_T(a_1^{\infty}, a_2^{\infty}, \dots, a_n^{\infty}) = c^{\infty},$$

$$G_T((a_1 a_1 \alpha_1)^{\infty}, (a_2 a_2 \alpha_2)^{\infty}, \dots, (a_n a_n \alpha_n)^{\infty}) = \epsilon^{\infty},$$

$$G_T((a_1 \alpha_1 a_1)^{\infty}, (a_2 \alpha_2 a_2)^{\infty}, \dots, (a_n \alpha_n a_n)^{\infty}) = \zeta^{\infty},$$

где $\epsilon, \zeta \in E_2^{s_2}$. Так как B G-сохраняет A', то $(c^{\infty}, \epsilon^{\infty}), (c^{\infty}, \zeta^{\infty}) \in A'$. А это значит, что $c = \epsilon(1) = \zeta(1)$, но $\epsilon(2) = \zeta(1)$, тогда $\epsilon(1) = \epsilon(2)$ и $\epsilon \in C$. То есть $T \in R_{s_2}^C$ и $B \subset R_{s_2}^C$. Противоречие.

Значит, A_2' имеет период 1 и $F_1 = F_2$. Тогда $s_1 = s_2$. Рассмотрим $A'' \subset E$ — множество элементов γ таких, что для каких-то $\eta_1 \in E_2^{t_1-1}$ и $\eta_2 \in E_2^{t_2-1}$ выполняется $(\eta_1 \gamma, \eta_2 \gamma) \in A$. нетрудно убедиться, что B G-сохраняет

- A''. Так как $F_1=F_2$, то для какого-то l>1 выполняется $g_1(t_1+l)=g_2(t_2+1)$. Очевидно, $(10^{s_1-1})^\infty\in A''$, а $(0^l10^{s_1-l-1})^\infty\notin A''$. Но по лемме 15 множество A'' состоит из все сверхслов с определённым периодом, который очевидно делит s_1 . Получили противоречие. Значит, случай б) полностью разобран.
- в) Очевидно $s_1=s_2=s$ и $F_1=F_2$. Покажем, что для любого $l_1 \in \mathbb{N}_1$ существует $l_2 \in \mathbb{N}_2$ такое, что $g_1(l_1) = g_2(l_2)$. Предположим, что это не так, тогда рассмотрим минимальное такое $l_1\in\mathbb{N}_1$, что для любого $i\in\mathbb{N}_2$ выполняется $g_1(l_1+1) \neq g_2(i)$. Так как l_1 — минимальное, то для какогото $l_2 \in \mathbb{N}_2$ выполняется $g_1(l_1) = g_2(l_2)$. Если $u_{A_1}(l_1+1) \geqslant h$, то воспользуемся леммой 10, получим, что для какого-то $k \in \mathbb{N}_2$ имеет место равенство $g_1(l_1+1) = g_2(k)$, что противоречит выбору l_1 . Если же $u_{A_1}(l_1+1) < h$, то $g_1(l_1+1) \in F_1$, $g_1(l_1+1) \in F_2$. Но мы предполагали, что для любого $i \in \mathbb{N}_2$ выполняется $g_1(l_1+1) \neq g_2(i)$. Получили проиворечие, значит, для любого $l_1 \in \mathbb{N}_1$ существует $l_2 \in \mathbb{N}_2$ такое, что $g_1(l_1) = g_2(l_2)$. Аналогично наоборот: для любого $l_2 \in \mathbb{N}_2$ существует $l_1 \in \mathbb{N}_1$ такое, что $g_1(l_1) = g_2(l_2)$. Отсюда в частности следует, что $m_2 = (m_1)'$, а так как $\widetilde{g}(2) \neq \widetilde{g}(2')$, то $m_1 > 1$.

Для всех $1\leqslant i\leqslant m_1$ найдём $l_i\in\mathbb{N}_2$ такое, что $g_1(i)=g_2(l_i)$. Пусть множество $D_i\subset E$ состоит из таких элементов δ , что для каких-то $\gamma\in E_2{}^{i-1}$ и $a\in E_2$ выполняется $(\gamma a^\infty,\delta)\in A$. Так как B G-сохраняет D_i для любого i, то мы можем применить к D_i лемму 15. Из неё следует, что множество $\{g_1(i+1),g_1(i+2),\ldots,g_1(m_1-1)\}$ совпадает с $\{g_2((i)'+1),g_2((i)'+2),\ldots,g_2((m_1)'-1)\}$. Для $i=m_1-1$ это означает, что $g_1(m_1-1)=g_2((m_1)'-1)$. Далее для $i=m_1-2$ получаем $\{g_1(m_1-2),g_1(m_1-1)\}=\{g_2((m_1)'-2),g_2((m_1)'-1)\},$ а значит, $g_1(m_1-2)=g_2((m_1)'-2)$. И так далее, получим, что $g_2((i)')=g_1(i)$ для любого i. Для i=2 получим $g_1(2)=g_2(2')$. Получили противоречие, значит, случай в) полностью разобран и лемма доказана.

Доказательство теоремы 2. Необходимость следует из теоремы 1. Докажем достаточность. Для h=1 утверждение теоремы очевидно. Рассмотрим случай $h\geqslant 2$.

Предположим, что $B\subset M_{pq}$ для некоторого q>2h. Если p>h, то $B\subset M_{h,h+q-p}$. Если $p\leqslant h$, то $B\subset M_{p,2h}$. Получаем противоречие с условием теоремы. Следовательно, $B\not\subset M_{pq}$ для q>2h.

 $B\not\subset S_p$ для p>h, так как иначе $B\subset S_h$, что противоречит условию теоремы.

Из леммы 16 следует, что существует автомат с одним входом $W \in [B]$ такой, что

$$f_u(a_1,\ldots,a_{u-1},a_u)=a_{u-1}$$

для любых $a_1, \ldots, a_u \in E_2$, где u — высота автомата W.

Из леммы 4 следует, что существует N>u и автомат $S_{uN}\in [B]$ такой, что

$$y(t) = \begin{cases} 0, & 1 \le t \le u, \\ 1, & t > N. \end{cases}$$

Из леммы 3 следует, что для любого i существует автомат $T_{iN} \in [B]$ такой, что

$$y(t) = \begin{cases} 0, & 1 \leqslant t \leqslant N, t \neq i, \\ 1, & t = i. \end{cases}$$

Из леммы 5 следует, что для любого i существует автомат $U_i \in [B]$ такой, что y(i) = x(i-1). Автомат $T_{iN}\&U_i(x)$ в i момент времени работает как единичная задержка, а в остальные моменты времени $\leqslant N$ возвращает 0. Далее автомат $\bigvee_{i=2}^{N} (T_{iN}\&U_i(x))$ работает как единичная задержка в моменты времени $\leqslant N$, а автомат W(x) работает как единичная задержка, начиная с момента времени u. Осталось сделать так, чтобы сначала работал первый автомат, а потом второй. Воспользуемся для этого автоматом S_{uN} и получим автомат $R = (\overline{S_{uN}}\&\bigvee_{i=2}^{N} (T_{iN}\&U_i))\bigvee(S_{uN}\&W)$, который реализует единичную задержку. Так как $P_2 \subset B$ и $R \in [B]$, то $[B] = \mathcal{P}_a$. Теорема доказана.

Список литературы

- [1] Кудрявцев В. Б., Алешин С. В., Подколзин А. С. Введение в теорию автоматов. М.: Наука, 1985.
- [2] Кратко М. И. Алгоритмическая неразрешимость проблемы распознавания полноты для конечных автоматов // ДАН СССР. 1964. Т. 155.
- [3] Бабин Д. Н. Разрешимый случай задачи о полноте автоматных функций // Дискретная математика. № 4. 1992.
- [4] Кудрявцев В. Б. Функциональные системы. М.: Наука, 1990.
- [5] Берж К. Теория графов и её применения. М.: ИЛ, 1962.