Автоматная модель преследования

Н. Ю. Волков

Обозначим множества натуральных и целых чисел как \mathbb{N} и \mathbb{Z} , соответственно. Положим $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$. Множество клеток, на которые плоскость разбивается целочисленной решеткой, обозначим \mathbb{Z}^2 , сопоставляя каждой клетке координаты ее нижнего левого угла. Назовем r-окрестностью клетки (x_0,y_0) множество $D_{(x_0,y_0),r}=\{(x,y)\mid (|x-x_0|+|y-y_0|)\leqslant r\}$. Определим следующие лабиринты — подмножества \mathbb{Z}^2 . $L_0=\mathbb{Z}^2$, $L_1=\{(x,y)\mid x\in\mathbb{Z},y\in\mathbb{N}\}$, $L_2(l)=\{(x,y)\mid 0< y\leqslant l,x,y\in\mathbb{N}\}$, $L_3(l)=\{(x,y)\mid 0< y\leqslant l,x,y\in\mathbb{N}\}$, $L_4=\{(x,y)\mid x,y\in\mathbb{N}\}$, $L_5(l)=\{(x,y)\mid 0< x\leqslant l,0< y\leqslant l,x,y\in\mathbb{N}\}$. Здесь $l\in\mathbb{N}$. Эти лабиринты назовем, соответственно, плоскостью, полуплоскостью, l-полосой и l-полуполосой, квадрантом и l-квадратом.

Рассмотрим автоматный аналог ситуации преследования хищниками своих жертв. В качестве пространства преследования будем рассматривать лабиринт L, являющийся одним из лабиринтов L_0 , L_1 , $L_2(l)$, $L_3(l)$, L_4 , $L_5(l)$. Хищники и жертвы представляются в виде автоматов, которые, находясь в какой-либо клетке лабиринта, умеют обозревать некоторую ее окрестность, и, в зависимости от вида (конфигурации) этой окрестности и своего состояния, способны перемещаться в другую клетку лабиринта. Поведение каждого автомата определяется его начальным расположением в лабиринте, его «физическими параметрами» — обзором и скоростью, а также его внутренней логикой. Определим хищников и жертв более формаль-

Под автоматом будем понимать инициальный конечный автомат вида $\mathcal{A}=(A,Q,B,\varphi,\psi,q_0)$, где A — входной, B — выходной, Q — внутренний алфавиты автомата $\mathcal{A},\,\varphi:Q\times A\to Q$ и $\psi:Q\times A\to B$ —

функции переходов и выходов \mathcal{A} , соответственно, $q_0 \in Q$ — его начальное состояние. Алфавит A определяет возможности \mathcal{A} «видеть» происходящее вокруг, а алфавит B — его возможности перемещаться. Алфавит Q и функции φ и ψ задают внутреннюю логику автомата.

Выходным алфавитом автомата \mathcal{A} , перемещающегося в лабиринте L, является множество $B=D_{(0,0),V}$, где параметр $V\in\mathbb{N}$ называется скоростью автомата \mathcal{A} . Входной алфавит \mathcal{A} зависит от параметра $R\in\mathbb{N}$ ($R\geqslant V$), называемого обзором автомата \mathcal{A} и способа взаимодействия \mathcal{A} с другими автоматами. Возможны два случая такого взаимодействия: 1) \mathcal{A} является элементом независимой системы (н. системы) автоматов; 2) \mathcal{A} является элементом коллектива автоматов. Пусть автомат \mathcal{A} со скоростью V и обзором R находится в клетке (x_0,y_0) . Множество $D_{(x_0,y_0),R}$ называется зоной обзора \mathcal{A} .

Рассмотрим две системы автоматов $K = (W_1, \ldots, W_m)(R, V)$ и $S = (U_1, \ldots, U_n)(R', V')$ с обзорами R и R' и скоростями V и V', соответственно. Здесь S — н. система жертв, K — коллектив хищников. Фиксируем начальные расположения всех автоматов в лабиринте L.

Состояние зоны обзора U_i $(1\leqslant i\leqslant n)$ в текущий такт времени определяется расположением U_i относительно границы лабиринта и расположением хищников в зоне обзора U_i . Такое состояние зоны обзора U_i будем называть U_i -конфигурацией $(U_i$ -конф.) Состояние зоны обзора W_j $(1\leqslant j\leqslant m)$ определяется расположением W_j относительно границы лабиринта, расположением жертв и хищников в зоне обзора W_j , а также состояниями хищников, попавших в зону обзора W_j . Такое состояние зоны обзора W_j будем называть W_j -конфигурацией $(W_j$ -конф.) Таким образом, каждая жертва «не видит» других жертв, но «видит» границы лабиринта и хищников на расстоянии своего обзора, а хищники «видят» границы лабиринта, жертв и друг друга на расстоянии своего обзора.

Расположения и состояния жертв и хищников однозначно задают все U_i -конф. и W_j -конф. Множество U_i -конф. при всевозможных расположениях и состояниях жертв и хищников обозначим F', а множество всех W_j -конф. — F. Входным алфавитом каждой жертвы является множество $\{(\mathcal{F}_1,\mathcal{F}_2) \mid \mathcal{F}_1 \in (\{\varnothing\} \cup F'), \mathcal{F}_2 \in F'\}$. Входным алфавитом каждого хищника является множество $\{(\mathcal{F}_1,\mathcal{F}_2) \mid \mathcal{F}_1, \mathcal{F}_2 \in F\}$.

В четные такты каждая жертва U_i получает на вход пару, состо-

ящую из текущей U_i -конф. и U_i -конф. в предыдущий такт (в нулевой такт вместо предыдущей U_i -конф. на вход поступает \varnothing). В соответствии со своими функциями переходов и выходов, U_i в четные такты перемещается в некоторую клетку и меняет свое состояние. В нечетные такты каждый хищник W_j получает на вход пару, состоящую из текущей и предыдущей W_j -конф. В соответствии со своими функциями переходов и выходов, W_j в нечетные такты перемещается и меняет свое состояние. Рассматриваются только такие автоматы, для которых перемещение на вектор, равный выходному символу, никогда не выводит за пределы лабиринта L. Жертва считается пойманной, если она оказалась в V-окрестности одного из хищников. Пойманная жертва исчезает из лабиринта. K «ловит» н. систему жертв, если в процессе преследования K ловит каждую жертву.

Расположение системы автоматов в лабиринте, при котором все они находятся в одной клетке, назовем *каноническим*. Вместо слов «начальное расположение» будем использовать сокращение «н. р.», а вместо «каноническое расположение» — «к. р.» Зафиксируем $R, V \in \mathbb{N}$, такие что $2 \leq V \leq R$. Получены следующие результаты.

Теорема 1. Существуют коллективы хищников $K_0(R,V)$, $K_1(R,V)$, $K_2(R,V)$, $K_3(R,V)$ и $K_4(R,V)$, такие что:

- 1) Для каждого i = 0, 1, коллектив K_i , стартуя из любого к. р. в L_i , ловит любую конечную н. систему жертв S(R, V 1) при любом их н. р. в L_i .
- 2) Для каждого i=2,3, коллектив K_i , при любом l, стартуя из любого κ . p. g $L_i(l)$, ловит любую конечную g. систему жертв S(R,V-1) при любом g0 их g1. g2.
- 3) При $V > 7 \cdot V'$, коллектив K_4 , стартуя из любого к. р. в L_4 , ловит любую конечную н. систему жертв S(R, V') при любом их н. р. в L_4 .

Теорема 2. Верны следующие утверждения:

1) Для любой конечной н. системы жертв S(R, V-1), существует коллектив хищников $K_5(R, V)$, который, при любом l, стартуя из любого к. р. в $L_5(l)$, ловит S(R, V-1) при любом н. р. жертв в $L_5(l)$. 2) Для любого конечного коллектива хищников K(R, V) существуют н. система жертв S(R, V-1) и натуральное число l, такие что

для любого н. р. хищников в $L_5(l)$, существует н. р. жертв в $L_5(l)$, при котором все они убегают от хищников.

Автор работы выражает признательность В. Б. Кудрявцеву за научное руководство.

Список литературы

- [1] Кудрявцев В. Б., Алешин С. В., Подколзин А. С. Введение в теорию автоматов. М.: Наука, 1985.
- [2] Килибарда Г., Кудрявцев В.Б., Ушчумлич Ш. Независимые системы автоматов в лабиринтах // Дискретная математика. Т. 15. Вып. 2.
- [3] Килибарда Г., Кудрявцев В.Б., Ушчумлич Ш. Коллективы автоматов в лабиринтах // Дискретная математика. Т. 15. Вып. 3. 2003.
- [4] Грунская В.И. О динамическом взаиомдействии автоматов // Мат. кибернетика и ее приложения к биологии. МГУ, 1987. С. 8–18.
- [5] Волков Н.Ю. Об автоматной модели преследования // Дискретная математика. 2007. Вып. 2.