Разрешимый случай задачи выразимости для автоматных функций относительно суперпозиции

А. А. Летуновский

Рассматривается задача выразимости константных автоматных функций относительно суперпозиции. Показано, что для конечных систем автоматных функций, содержащих все истинностные функции и задержку, существует алгоритм выразимости константных автоматных функций. Также показано существование алгоритма для задачи бесконечности множества выразимых константных автоматных функций.

Пусть $E_k=\{0,1,\ldots,k-1\}$, функции вида $g:E_k^n\to E_k$ называются функциями k-значной логики, их множество обозначается через P_k . Пусть E_k^∞ — множество всех сверхслов вида $a(1)a(2)\ldots$, где $a(j)\in E_k,\ j=1,2,\ldots$ Через $\mathbb N$ обозначим множество натуральных чисел. Пусть

$$f: (E_k^{\infty})^n \to (E_k^{\infty})^m$$

— автоматная функция (a-функция), то есть она задается рекуррентно соотношениями (1)

$$\begin{cases}
q_{1}(1) = q0_{1}, \\
\dots \\
q_{s}(1) = q0_{s} \\
q_{1}(t+1) = \phi_{1}(q_{1}(t), \dots, q_{s}(t), a_{1}, \dots, a_{n}), \\
\dots \\
q_{s}(t+1) = \phi_{s}(q_{1}(t), \dots, q_{s}(t), a_{1}, \dots, a_{n}) \\
b_{1}(t) = \psi_{1}(q_{1}(t), \dots, q_{s}(t), a_{1}, \dots, a_{n}) \\
\dots \\
b_{m}(t) = \psi_{m}(q_{1}(t), \dots, q_{s}(t), a_{1}, \dots, a_{n})
\end{cases}$$
(1)

Вектор $q=(q_1,\ldots,q_s)$ задает состояние a-функции f, q0 её начальное состояние, буквы $a=(a_1,a_2\ldots,a_n)$ и $b=(b_1,\ldots,b_m)$ называют входной и выходной буквами, а сверхслова $a(1)a(2)\ldots$ и $b(1)b(2)\ldots$ — входными и выходными сверхсловами, соответственно. Вектор-функции ϕ и ψ называются функциями переходов и выходной функцией, соответственно, а шестерка

$$(E_k^n, E_k^s, E_k^m, \phi, \psi, q0)$$

— автоматом, порождающим функцию f. Далее в тексте мы иногда будем использовать для автомата обозначение $(A,Q,B,\phi,\psi,q0)$, при этом предполагая что $A\subseteq E_k^n,\ Q\subseteq E_k^s,\ B\subseteq E_k^m$. Обычным образом доопределим функции ϕ и ψ на слова:

$$\begin{split} \phi(q,a(1),\dots,a(t)) &= \phi(\phi\dots\phi(q,a(1),\dots,a(t-1)),a(t)),\\ \psi(q,a(1),\dots,a(t)) &= \psi(\phi(q,a(1),\dots,a(t-1)),a(t))\\ \underline{\mathbf{n}} \text{ введем функцию}\\ \overline{\psi}(q,a(1),\dots,a(t)) &= \overline{\psi}(q,a(1),\dots,a(t-1))\psi(\phi(q,a(1),\dots,a(t-1)),a(t)).\\ \text{Класс всех a-функций обозначим через P.} \end{split}$$

В этом классе обычным образом введем операции суперпозиции. Для суперпозиции будем использовать модификации операций из [5].

$$\begin{cases} (\eta f)(x_1, x_2, \dots, x_n) = f(x_2, x_3, \dots, x_n, x_1), \\ (\varepsilon f)(x_1, x_2, \dots, x_n) = f(x_2, x_1, x_3, \dots, x_n) \\ (\varpi f)(x_1, x_2, \dots, x_n) = f(x_1, x_1, \dots, x_{n-1}) \\ (\delta f)(x_1, x_2, \dots, x_n) = f(x_2, x_3, \dots, x_{n+1}) \\ (f * g)(x_1, x_2, \dots, x_{m+n-1}) = f(g(x_1, \dots, x_m), x_{m+1}, \dots, x_{m+n-1}) \end{cases}$$

Пусть $M \subseteq P$, обозначим через [M] множество a-функций, получающихся из M с помощью операций суперпозиции.

Автоматную функцию G_0 , задаваемую уравнениями

$$\begin{cases} q(1) = 0, \\ q(t+1) = a(t), \\ b(t) = q(t), \end{cases}$$

называем автоматной функцией задержки. $P^{(1)}$ — множество автоматных функций с одним состоянием.

Квазиконстантной автоматной функцией назовем автоматную функцию, для которой выполнено $q(t+1)=\phi(t)$. Класс квазиконстантных автоматных функций обозначим через K.

Мы будем рассматривать следующую задачю: по конечному множеству M и $\beta \in K$ проверить, верно ли что

$$\beta \in [M \cup \{G_0, P^{(1)}\}].$$

Теорема 1. Пусть M — конечное множество автоматных функций и β — квазиконстантная автоматная функция, тогда существует алгоритм, позволяющий проверить свойство $\beta \in [M \cup \{G_0, P^{(1)}\}].$

Автор выражает благодарность академику Кудрявцеву В.Б. и проф. Бабину Д.Н. за ценные замечания и внимание к работе.

Список литературы

- [1] Кудрявцев В.Б. О мощностях множеств предполных классов некоторых функциональных систем, связанных с автоматами // ДАН СССР. Т. 151. № 3. 1963. С. 493–496.
- [2] Кратко М. И. Алгоритмическая неразрешимость проблемы распознавания полноты для конечных автоматов // ДАН СССР. 1964. Т. 155. № 1. С. 35–37.
- [3] Бабин Д. Н. Разрешимый случай задачи о полноте автоматных функций // Дискретная математика. Т. 4. Вып. 4. С. 41–56. М.: Наука, 1992.
- [4] Бабин Д. Н. О классификации автоматных базисов Поста по разрешимости свойств полноты и А-полноты // ДАН. № 4. Т. 367. 1999. С. 439–441.
- [5] Мальцев А. И. Итеративные алгебры и многообразие Поста // Алгебра и логика. 1966. Т. 5. № 2. С. 5–24.
- [6] Кудрявцев В. Б., Алешин С. В., Подколзин А. С. Введение в теорию автоматов. М.: Наука, 1985.
- [7] Летуновский А. А. О выразимости константных автоматов // Интеллектуальные системы. Т. 9. Вып. 1–4. 2005. С. 457–469.